首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  国内免费   1篇
  完全免费   8篇
  自动化技术   18篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
加权光滑CHKS孪生支持向量机   总被引:3,自引:2,他引:1       下载免费PDF全文
丁世飞  黄华娟  史忠植 《软件学报》2013,24(11):2548-2557
针对光滑孪生支持向量机(smooth twin support vector machines,简称STWSVM)采用的Sigmoid 光滑函数逼近精度低和STWSVM 对异常点敏感的问题,引入一种性能更好的光滑函数——CHKS 函数,提出了光滑CHKS孪生支持向量机模型(smooth CHKS twin support vector machines,简称SCTWSVM).在此基础上,根据样本点的位置为每个训练样本赋予不同的重要性,以降低异常点对非平行超平面的影响,提出了加权光滑CHKS 孪生支持向量机(weighted smooth CHKS twin support vector machines,简称WSCTWSVM).不仅从理论上证明了SCTWSVM 具有严凸性和任意阶光滑的性能,而且在数据集上的实验结果表明,相对于STWSVM,SCTWSVM 可以在更短的时间内获得更高的分类精度,同时验证了WSCTWSVM 的有效性和可行性.  相似文献
2.
最小二乘双支持向量机的在线学习算法   总被引:1,自引:0,他引:1  
针对具有两个非并行分类超平面的最小二乘双支持向量机,提出了一种在线学习算法。通过利用矩阵求逆分解引理,所提在线学习算法能充分利用历史的训练结果,避免了大型矩阵的求逆计算过程,从而降低了计算的复杂性。仿真结果验证了所提学习算法的有效性。  相似文献
3.
In this paper, we propose an efficient weighted Lagrangian twin support vector machine (WLTSVM) for the imbalanced data classification based on using different training points for constructing the two proximal hyperplanes. The main contributions of our WLTSVM are: (1) a graph based under-sampling strategy is introduced to keep the proximity information, which is robustness to outliers, (2) the weight biases are embedded in the Lagrangian TWSVM formulations, which overcomes the bias phenomenon in the original TWSVM for the imbalanced data classification, (3) the convergence of the training procedure of Lagrangian functions is proven and (4) it is tested and compared with some other TWSVMs on synthetic and real datasets to show its feasibility and efficiency for the imbalanced data classification.  相似文献
4.
双支持向量机是一种新的非平行二分类算法,其处理速度比传统支持向量机快很多,但是双支持向量机在训练之前要进行大量的复杂逆矩阵计算;在非线性情况下,它不能像传统支持向量机那样把核技巧直接运用到对偶优化问题中;并且双支持向量机没有考虑不同输入样本点会对最优分类超平面产生不同的影响。针对这些情况,提出了一种模糊简约双支持向量机。该模糊简约双支持向量机通过对二次规划函数和拉格朗日函数的改进,省略大量的逆矩阵计算,同时核技巧能直接运用到非线性分类情况下;对于混合模糊隶属度函数,不仅每个样本点到类中心的距离影响着该混合模糊隶属度,而且该样本点的邻域密度同样影响着该混合模糊隶属度。实验结果表明,与支持向量机、标准双支持向量机、双边界支持向量机、模糊双支持向量机相比,具有该混合模糊隶属度函数的简约双支持向量机不仅分类时间短,计算简单,而且分类精度高。  相似文献
5.
针对目前常用于P2P流量识别的有监督机器学习方法普遍存在时间代价较高的现状,提出采用时间代价为标准支持向量机四分之一的双支持向量机来构建分类器,并采用K均值集成方法快速生成有标签样本集,组合有标签样本集构成双支持向量机的训练样本,最后利用构建好的双支持向量机分类模型进行P2P流量的识别.实验结果表明采用基于K均值集成结合双支持向量机的方法在P2P流量识别的时间代价、准确率和稳定性方面要远优于标准支持向量机.  相似文献
6.
虽然孪生支持向量机(Twin Support Vector Machine,TSVM)的处理速度优于传统的支持向量机,但其并没有考虑输入样本点对最优分类超平面所产生的不同影响。通过为每个训练样本赋予不同的样本重要性,以及减少样本点对非平行超平面的影响,提出了模糊加权孪生支持向量机(Fuzzy TSVM,FTSVM)。在UCI标准数据集上,对FTSVM进行了实验研究并与TSVM、FSVM和SVM方法进行了比较,实验结果表明FTSVM方法是有效的。  相似文献
7.
遥感图像的分类是研究土地利用变化的基础。传统的遥感图像分类方法存在运算速度慢、精度比较低和难以收敛等问题。提出了一种基于模糊双支持向量机的多类分类方法,将模糊技术引入到双支持向量机中,赋予不同样本以不同的模糊隶属度,然后将模糊双支持向量机推广到多类分类中,最后将新方法应用到遥感图像分类中。实验表明,新方法比传统的支持向量机多类分类方法有较高的分类精度,并且有较强的抗噪声能力,在运行时间上也是可行的。模糊双支持向量机是一种有效的遥感图像分类方法。  相似文献
8.
针对传统的人体动作识别分类器忽略时空特征存在的固有噪声和动作类的异常值而导致严重类失衡和类内差异的问题,提出一种基于能量的最小二乘双分界面支持向量机(ELS-TSVM)的人体动作识别算法。首先对于输入的视频使用梯度方向直方图特征和光流直方图特征识别人体动作;然后,检测可能的兴趣点,生成时空特征后提取时空视觉词袋特征,通过构建一组视觉词袋来完成特征提取;最后,利用ELS-TSVM完成分类。解决了SVM的类失衡和计算量高的问题。在Weizmann和Hollywood数据库上的实验验证了本文算法的有效性及可靠性,实验结果表明,相比其他几种较新的方法,本文算法更加高效精确,且大大减少了算法执行时间。  相似文献
9.
为了提高在大流量背景下DDoS攻击检测的实时性。本文提出一种在大流量背景下基于活跃熵的DDoS攻击检测方法。在IP流层面通过分析系统活跃熵值来对整个流量进行初探,剔除正常流量。利用多特征广泛权重最小二乘孪生支持向量机算法(WWLSTSVM)对攻击威胁进行攻击确认。通过实验验证方法的可行性,实验表明在合适场景下本方法可以在保证时效性的同时减少系统误报率。大流量背景下该检测方法比一般的机器学习算法具有更好的检测性能。  相似文献
10.
双支持向量机是近年提出的一种新的支持向量机.在处理模式分类问题时,双支持向量机速度远远超过传统支持向量机,而且显示出较好的推广能力.但双支持向量机没有考虑不同输入样本点可能会对分类超平面的形成产生不同影响,在某些实际问题中具有局限性.为了克服这个缺点,提出了一种基于混合模糊隶属度的模糊双支持向量机.该算法设计了一种结合距离和紧密度的模糊隶属度函数,给不同的训练样本赋予不同的模糊隶属度,构建两个最优非平行超平面,最终实现二值分类.实验证明,该模糊双支持向量机的分类性能优于传统的双支持向量机.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号