首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  国内免费   2篇
  完全免费   7篇
  自动化技术   21篇
  2022年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有21条查询结果,搜索用时 125 毫秒
1.
新型背景混合高斯模型   总被引:4,自引:2,他引:2  
针对背景减除法中经典混合高斯模型计算量过大的问题,提出一种新的背景混合高斯模型。该方法利用偏差均值作为判断模型是否与当前像素值匹配的阈值参数,有效减少了经典模型中由于开平方及指数运算带来的庞大计算量;同时引入持续平稳时间的概念,采用非线性权值更新方法,能够使较长时间停留在场景中的物体迅速成为背景。实验结果表明,该方法显著提高了背景模型的计算效率。  相似文献
2.
A Winnow-Based Approach to Context-Sensitive Spelling Correction   总被引:3,自引:0,他引:3  
A large class of machine-learning problems in natural language require the characterization of linguistic context. Two characteristic properties of such problems are that their feature space is of very high dimensionality, and their target concepts depend on only a small subset of the features in the space. Under such conditions, multiplicative weight-update algorithms such as Winnow have been shown to have exceptionally good theoretical properties. In the work reported here, we present an algorithm combining variants of Winnow and weighted-majority voting, and apply it to a problem in the aforementioned class: context-sensitive spelling correction. This is the task of fixing spelling errors that happen to result in valid words, such as substituting to for too, casual for causal, and so on. We evaluate our algorithm, WinSpell, by comparing it against BaySpell, a statistics-based method representing the state of the art for this task. We find: (1) When run with a full (unpruned) set of features, WinSpell achieves accuracies significantly higher than BaySpell was able to achieve in either the pruned or unpruned condition; (2) When compared with other systems in the literature, WinSpell exhibits the highest performance; (3) While several aspects of WinSpell's architecture contribute to its superiority over BaySpell, the primary factor is that it is able to learn a better linear separator than BaySpell learns; (4) When run on a test set drawn from a different corpus than the training set was drawn from, WinSpell is better able than BaySpell to adapt, using a strategy we will present that combines supervised learning on the training set with unsupervised learning on the (noisy) test set.  相似文献
3.
一种PCA算法及其应用   总被引:3,自引:0,他引:3  
张媛  张燕平 《微机发展》2005,15(2):67-68,72
主成分分析是用于简化数据的一种技术,对于某些复杂数据就可应用主成分分析法对其进行简化。文中所用到的是一种连续统一的主分量分析法,它利用特征结构的正交性,提取出用于下一主分量的初始权向量,并且任何一种适用于线性前向反馈神经网络的主分量分析法都可作为此算法中的权修正等式。最后,将这种PCA法与普通PCA法运用于股票数据之中进行比较,结果对比证明用此方法提取出的数据比以前有所改进。  相似文献
4.
切比雪夫正交基神经网络的权值直接确定法   总被引:2,自引:0,他引:2  
经典的BP神经网络学习算法是基于误差回传的思想.而对于特定的网络模型,采用伪逆思想可以直接确定权值进而避免以往的反复迭代修正的过程.根据多项式插值和逼近理论构造一个切比雪夫正交基神经网络,其模型采用三层结构并以一组切比雪夫正交多项式函数作为隐层神经元的激励函数.依据误差回传(BP)思想可以推导出该网络模型的权值修正迭代公式,利用该公式迭代训练可得到网络的最优权值.区别于这种经典的做法,针对切比雪夫正交基神经网络模型,提出了一种基于伪逆的权值直接确定法,从而避免了传统方法通过反复迭代才能得到网络权值的冗长训练过程.仿真结果表明该方法具有更快的计算速度和至少相同的工作精度,从而验证了其优越性.  相似文献
5.
Adaptive multi-cue tracking by online appearance learning   总被引:1,自引:0,他引:1  
This paper proposes a multi-cue based appearance learning algorithm for object tracking. In each frame, the target object is represented by different cues in the image-as-matrix form. This representation can describe the target from different perspectives and can preserve the spatial correlation information inside the target region. Based on these cues, multiple appearance models are learned online by bilinear subspace analysis to account for the target appearance variations over time. Tracking is formulated within the Bayesian inference framework, in which the observation model is constructed by fusing all the learned appearance models. The combination of online appearance modeling and weight update of each appearance model can adapt our tracking algorithm to both the target and background changes. We test our algorithm on a variety of challenging sequences by tracking car, face, pedestrian, and so on. Experimental results and comparisons to several state-of-the-art methods show improved tracking performance.  相似文献
6.
贝叶斯概率LSA模型权重更新算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对潜在语义分析(LSA)模型的权重更新问题,提出了一种基于贝叶斯理论的自适应权重更新算法ALSAB。ALSAB采用最大后验概率估计与期望值最大(EM)算法对概率LSA模型参数进行有效的估计,在充分考虑多次更新中不常用字词概率参数降低问题的前提下,采用增量学习方法降低多次更新产生的累积效应。实验结果表明,与现有的权重更新算法相比,提出的ALSAB算法显著地提高了检索的准确率与召回率。  相似文献
7.
Fourier三角基神经元网络的权值直接确定法   总被引:1,自引:0,他引:1  
根据Fourier变换理论,本文构造出一类基于三角正交基的前向神经网络模型。该模型由输入层、隐层、输出层构成,其输入层和输出层采用线性激励函数,以一组三角正交基为其隐层神经元的激励函数。依据误差回传算法(即BP算法),推导了权值修正的迭代公式。针对BP迭代法收敛速度慢、逼近目标函数精度较低的缺点,进一步提出基于伪逆的权值直接确定法,该方法避免了权值反复迭代的冗长过程。仿真和预测结果表明,该方法比传统的BP迭代法具有更快的计算速度和更高的仿真与测试精度。  相似文献
8.
为了提高AP算法的数据集分类准确度和收敛速度,提出一种基于改进AP算法的迭代加权更新的带加速算子的半监督AP聚类算法(AP-SSM)。该算法采用带约束的标签映射的方法对样本所属子簇进行分类,在采用传统AP聚类算法上引入了迭代加权更新方法来吸引度参数和适选度参数,并在算法聚类过程中引入了加速因子,考虑到了子簇自身数据中心和权重值的加速因子可以提高聚类精度和算法收敛性能。仿真实验结果表明,AP-SSM算法相比AP、AP-VSM、SAP算法,在数据集分类准确度和算法运行速度上具有更好的效果。  相似文献
9.
刘悦婷 《计算机工程》2012,38(23):206-210,218
混合蛙跳算法易陷入局部最优,且收敛速度较慢。为此,提出一种带有选择和自适应变异机制的蛙跳算法。引入线性递减的动态惯性权重修正最差青蛙,按照一定的概率选择适应度值较优的青蛙代替较差青蛙,并对每只青蛙个体以不同概率进行自适应变异。仿真结果表明,该算法可以平衡全局搜索和局部搜索,寻优能力强、迭代次数少,解的精度较高,更适合高维复杂函数的优化。  相似文献
10.
大样本集上在线预测算法时间空间复杂度小、预测准确性高,与批处理学习算法相比,有明显的优势。自从Jivinen和M.Warmuth提出权衡正确性与保守性的在线学习框架后,在线学习框架已被广泛引用。但是在Jivinen和M.Warmuth提出的梯度下降和指数梯度下降算法中,对目标函数中的损失函数求导过程中使用近似步骤会引起在线学习结果恶化。运用对偶最优化理论,提出了非近似的基于不同距离和损失函数的乘更新分类算法,一系列的实验显示算法提高了预测准确率。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号