首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   3篇
电工技术   4篇
能源动力   2篇
  2023年   3篇
  2022年   3篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
模块化多电平矩阵变换器(MMMC)应用于新能源海上风电直接AC/AC变换时,由于新能源发电的随机性及本身的非线性特性,在三相电压不平衡下MMMC输入、输出双侧电流常用的PID控制策略难以达到理想的控制效果,基于Lyapunov函数控制方法的控制器数量、控制复杂程度和控制效果都优于PID控制,提出了三相电压不平衡下MMMC的输入、输出双侧采用Lyapunov控制策略。根据MMMC的数学拓扑结构建立三相电压不平衡下MMMC双侧Lyapunov的数学模型,证明了其具有全局渐进稳定性,讨论了控制不精确以及参数选择问题。最后通过仿真平台对提出的Lyapunov控制策略与PID控制策略进行仿真比较,验证了所提控制方法的正确性与优越性。所提Lyapunov控制方法相较于PID控制稳定速度更快,总谐波畸变量(THD)更低,且具有强鲁棒性,对参数的变化不敏感。  相似文献   
2.
模块化多电平变流器(MMC)用于高压直流输电(HVDC)系统中时,通常采用PI控制方法,但这种策略存在参数选取繁杂、动态性能较差的缺点。为了提高高压直流输电(HVDC)系统的动态性能、简化参数选取,提出背靠背(B2B)型模块化多电平变流器-高压直流输电(MMC-HVDC)系统的Lyapunov控制策略。首先,建立B2B型MMC-HVDC数学模型;然后,设计Lyapunov函数控制策略;其次,在控制部分加入环流抑制、移相载波调制等,以完整地实现系统功能;最后,在Matlab/Simulink平台上验证了Lyapunov控制策略具有参数选择容易、动态性能优良的特点。  相似文献   
3.
为了提高高压电网电压质量补偿效果,提出基于模块化多电平换流器(MMC)的动态电压调节器(DVR)系统的无源非线性控制方法。首先,介绍MMC-DVR的框图以及工作原理,根据基尔霍夫电压电流定律,分别构建abc静止与两相dq旋转坐标系下的数学模型;接着提出无源控制方法来解决问题;最终,在Matlab/Simulink软件实验平台上构建MMC-DVR系统,构建仿真验证无源非线性控制的可行性和优越性。与传统PID相比,无源策略能使系统迅速稳定,提高抗扰能力,采取阻尼注入,能快速、有效地对电压降落/升高和谐波进行补偿,并且无源非线性控制器控制规律简单,所需控制器数量少,可避免PI控制参数选择困难及繁复的缺点。  相似文献   
4.
模块化多电平矩阵变换器(M3C)能实现三相交流-交流的变换,其突出优势是易于模块化、可靠性高、谐波含量低等,可用于高压大容量变频调速系统。针对传统PI控制稳定速度慢、易产生超调、动态性能差等缺陷,基于微分平坦理论推导出适用于M3C的非线性平坦控制策略,并通过李雅普诺夫方法证明了平坦控制系统的稳定性。平坦控制具有响应快速、无超调、跟踪无静差、动态性能高等优点,能极大地改善M3C输入、输出侧电流的控制效果,且在输入侧频率、输出侧负载变化等运行工况下,平坦控制策略依旧能保持极低的系统冲击量,整体控制效果较好。最后通过MATLAB/Simulink仿真平台对不同工况进行仿真,结果验证了平坦控制策略的正确性和优越性。  相似文献   
5.
动态电压调节器(DVR)与模块化多电平转换器(MMC)组合的MMC-DVR可用于解决中高电压的动态电压补偿问题。目前MMC-DVR基本采用PID等线性控制方法,而MMC-DVR为非线性系统,因而其控制效果并不能令人满意。为此,提出了针对非理想条件下MMC-DVR系统的非线性李雅普诺夫(Lyapunov)控制方法来解决此问题。首先,建立MMV-DVR的数学建模。接着,设计了非理想条件下正、负序MMC-DVR的Lyapunov控制系统。最后,通过实验验证了所提的Lyapunov控制方法用于MMC-DVR的正确性和有效性。与传统PID控制相比,Lyapunov控制方法的电压在理想、非理想的多种不同工况下都能得到很好的补偿,且系统的动态响应更快、鲁棒性更强。  相似文献   
6.
为了减少输电线路损耗,在海上风力发电等背景下,低频交流输电系统应运而生,它通过模块化多电平矩阵换流器(modular multilevel matrix converter,M3C)直接实现从低频到工频的AC/AC变换。研究了基于M3C的AC/AC系统在发生不对称故障时的控制策略。首先分析了M3C的电路结构和工作原理,然后针对系统故障不对称的情况,对电压电流进行正负序分离,再基于M3C系统双αβ0变换的数学模型与输入侧、输出侧系统的无源性,推导出输入侧和输出侧的无源控制规律,且通过调节循环电流实现桥臂电容电压控制。最后在仿真实验平台上,在两种不同工况下对所提的不平衡电网下M3C的两侧无源控制策略进行实验,仿真实验结果表明了所提的M3C无源控制策略的正确性和有效性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号