首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   6篇
电工技术   1篇
化学工业   6篇
金属工艺   1篇
机械仪表   2篇
能源动力   2篇
轻工业   15篇
无线电   3篇
一般工业技术   10篇
冶金工业   3篇
自动化技术   13篇
  2021年   3篇
  2019年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1992年   2篇
  1988年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
In this paper, we present an algorithm for the systematic calculation of Lie point symmetries for fractional order differential equations (FDEs) using the method as described by Buckwar & Luchko (1998) and Gazizov, Kasatkin & Lukashchuk (2007, 2009, 2011). The method has been generalised here to allow for the determination of symmetries for FDEs with nn independent variables and for systems of partial FDEs. The algorithm has been implemented in the new MAPLE package FracSym (Jefferson and Carminati 2013) which uses routines from the MAPLE symmetry packages DESOLVII (Vu, Jefferson and Carminati, 2012) and ASP (Jefferson and Carminati, 2013). We introduce FracSym by investigating the symmetries of a number of FDEs; specific forms of any arbitrary functions, which may extend the symmetry algebras, are also determined. For each of the FDEs discussed, selected invariant solutions are then presented.  相似文献   
2.
Electron transfer in proteins is essential in crucial biological processes. Although the fundamental aspects of biological electron transfer are well characterized, currently there are no experimental tools to determine the atomic‐scale electronic pathways in redox proteins, and thus to fully understand their outstanding efficiency and environmental adaptability. This knowledge is also required to design and optimize biomolecular electronic devices. In order to measure the local conductance of an electrode surface immersed in an electrolyte, this study builds upon the current–potential spectroscopic capacity of electrochemical scanning tunneling microscopy, by adding an alternating current modulation technique. With this setup, spatially resolved, differential electrochemical conductance images under bipotentiostatic control are recorded. Differential electrochemical conductance imaging allows visualizing the reversible oxidation of an iron electrode in borate buffer and individual azurin proteins immobilized on atomically flat gold surfaces. In particular, this method reveals submolecular regions with high conductance within the protein. The direct observation of nanoscale conduction pathways in redox proteins and complexes enables important advances in biochemistry and bionanotechnology.  相似文献   
3.
4.
In this paper, an accurate model of an airbrake electro‐hydraulic smart actuator is obtained by physical considerations, and then different control strategies (variable‐gain proportional control, PT1 control with switching integrator, and second order sub‐optimal sliding mode control) are proposed and analyzed. This application is innovative in the avionic field, and is one of the first attempts to realize a fly‐by‐wire system for airbrakes, oriented to its immediate employment and installation on current aircraft. The project was carried on with the participation of the Italian Ministry of Defense, and was commissioned to MAG, a leading provider of integrated systems and aviation services for aerospace. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   
5.
6.
Solid-state nanopores have been gaining popularity in nano-biotechnology for single molecule detection, in particular for label-free high-throughput DNA sequencing. In order to address the improvement of the resolution/speed trade-off critical in this application, here we present a new two-channel current amplifier tailored for solid-state nanopore devices with integrated tunneling electrodes. The simultaneous detection of ion and tunneling currents provides enhanced molecule tracking capability. We describe the system design starting from a detailed noise analysis and device modeling, highlighting the detrimental role of the conductive silicon substrate and of all the stray capacitive couplings between the electrodes. Given the high input capacitance (0.1–1 nF), the input voltage noise has been carefully minimized choosing a discrete couple of matched low-noise JFETs as input stage, thus achieving an equivalent input noise of 1.5 nV/√Hz (corresponding to a current noise floor of 15 fA/√Hz at 10 kHz). Low-noise performance (11 pA rms noise integrated over a 75 kHz bandwidth) is preserved at a wide bandwidth (300 kHz) and high gain (100 MΩ) thanks to the adoption of an improved integrator/differentiator cascade topology. Furthermore, along with biasing networks and selectable low-pass filters, an AC-coupled channel providing additional gain has been introduced in order to “zoom” in the current signature during pore blockade events. Together with an experimental characterization of the system (and comparison with the noise performance of other instruments), the platform is validated by demonstrating the detection of λ-DNA with 20 nm pores.  相似文献   
7.
We revisit the definition of the diffusion coefficient for light transport in scattering and absorbing media. From an asymptotic analysis of the transport equation, we present a novel derivation of the diffusion coefficient, which is restricted neither to low absorption nor to a situation in which the specific intensity is quasi-isotropic. Our result agrees with previous expressions of the diffusion coefficient in the appropriate limit. Using numerical simulations, we discuss the implications of the proper choice of the diffusion coefficient for time-dependent transport.  相似文献   
8.
Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high‐throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig‐zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1‐μm sized beads is demonstrated.  相似文献   
9.
Two visual-world eye-movement experiments investigated the nature of syntactic priming during comprehension--specifically, whether the priming effects in ditransitive prepositional object (PO) and double object (DO) structures (e.g., "The wizard will send the poison to the prince/the prince the poison?") are due to anticipation of structural properties following the verb (send) in the target sentence or to anticipation of animacy properties of the first postverbal noun. Shortly following the target verb onset, listeners looked at the recipient more (relative to the theme) following DO than PO primes, indicating that the structure of the prime affected listeners' eye gazes on the target scene. Crucially, this priming effect was the same irrespective of whether the postverbal nouns in the prime sentences did ("The monarch will send the painting to the president") or did not ("The monarch will send the envoy to the president") differ in animacy, suggesting that PO/DO priming in comprehension occurs because structural properties, rather than animacy features, are being primed when people process the ditransitive target verb. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
10.
The presence of Listeria monocytogenes on the rind of Gorgonzola cheese is difficult to avoid. This contamination can easily occur as a consequence of handling during ripening. The aims of this study were to determine the efficiency of high-pressure processing (HPP) for inactivation of L. monocytogenes on cheese rind and to evaluate the influence of HPP treatments on sensory characteristics. Gorgonzola cheese rinds, after removal, were inoculated (about 7.0 log CFU/g) with L. monocytogenes strains previously isolated from other Gorgonzola cheeses. The inoculated cheese rinds were processed with an HPP apparatus under conditions of pressure and time ranging from 400 to 700 MPa for 1 to 15 min. Pressures higher than 600 MPa for 10 min or 700 MPa for 5 min reduced L. monocytogenes more than 99%. A reduction higher than 99.999% was achieved pressurizing cheese rinds at 700 MPa for 15 min. Lower pressure or time treatments were less effective and varied in effectiveness with the cheese sample. Changes in sensory properties possibly induced by the HPP were evaluated on four different Gorgonzola cheeses. A panel of 18 members judged the treated and untreated cheeses in a triangle test. Only one of the four pressurized cheeses was evaluated as different from the untreated sample. HPP was effective in the reduction of L. monocytogenes on Gorgonzola cheese rinds without significantly changing its sensory properties. High-pressure technology is a useful tool to improve the safety of this type of cheese.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号