首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
电工技术   1篇
化学工业   2篇
机械仪表   2篇
轻工业   1篇
无线电   5篇
一般工业技术   1篇
冶金工业   1篇
  2018年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 18 毫秒
1.
Abnormal wave propagation in passive media   总被引:1,自引:0,他引:1  
Abnormal velocities in passive structures such as one-dimensional (1-D) photonic crystals and a slab having a negative index of refraction are discussed. In the case of 1-D photonic crystal, the frequency- and time-domain experiments for waves tuned to the bandgap of the photonic crystal demonstrate a positive group velocity exceeding the speed of light in vacuum (superluminal). In the case of a medium with negative index of refraction, our theoretical studies show that such a medium can support positive group and negative phase velocities (backward waves), as well as negative group and negative phase velocities. The meaning of superluminal group velocity and negative group velocity, or equally, positive superluminal group delay and negative group delay, are discussed. It is shown that despite their counterintuitive meaning there are no contradictions with the requirements of relativistic causality (Einstein causality). To clearly demonstrate this, the important subject of the "front" is reintroduced.  相似文献   
2.
We have simulated and constructed a one-dimensional metamaterial composed of a periodically loaded transmission line that exhibits both negative and positive group velocities in a band of effective negative index of refraction. The negative group velocity or, equivalently, the negative group delay, is demonstrated theoretically and experimentally in the time domain using modulated Gaussian pulses. Due to this negative delay, we can show an output pulse peak emerging from the loaded transmission line prior to the input peak entering the line, i.e., the output pulse precedes the input pulse. The fact that this surprising behavior does not violate the requirements of relativistic causality is illustrated with time-domain simulations, which show that discontinuities in the pulse waveforms are traveling at exactly the speed of light in vacuum. The pulse-reshaping mechanism underlying this behavior is also illustrated using time-domain simulations.  相似文献   
3.
A series of biopolymer‐based superabsorbent hydrogels based on carboxymethyl cellulose has been prepared by free‐radical graft copolymerization of acrylamide and 2‐acrylamido‐2‐methylpropan sulfonic acid (AMPS) in aqueous solution using methylenebisacrylamide as a crosslinking agent and ammonium persulfate as an initiator. The effect of variables on the swelling capacity such as: acrylamide/AMPS weight ratio, reaction temperature, and concentration of the initiator and crosslinker were systematically optimized. The results indicated that with increasing the amount of AMPS, the swelling capacity is increased. FT‐IR spectroscopy and scanning electron microscope analysis were used to confirm the hydrogel structure. Swelling measurements of the synthesized hydrogels in different salt solutions indicated considerable swelling capacity. The absorbency under load of the superabsorbent hydrogels was determined by using an absorbency under load tester at various applied pressures. A preliminary swelling and deswelling behaviors of the hydrogels were also studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
4.
The interbasin water transfer project is an alternative to balance the nonuniform temporal and spatial distribution of water resources and water demands, especially in arid and semi arid regions. A water transfer project can be executed if it is environmentally and economically justified. In this study, the feasibility of two interbasin water transfer projects from Karoon River in the western part of Iran to the central part of the country is investigated. An optimization model with an economic objective function to maximize the net benefit of the interbasin water transfer projects is developed. The planning horizon of the model is 23 years (the length of historical data); and it is solved using genetic algorithm. In order to consider environmental impacts of water transfer projects, a water quality simulation model has been used. Then, an Artificial Neural Network model is trained based on the simulation results of a river water quality model in order to be coupled with the optimization model. The outputs of the optimization model are the value of economic gain of the sending (Karoon) basin to offset the loss of agricultural income and environmental costs. The optimal polices for water transfer during the planning horizon has been generated using the coupled simulation-optimization model. Then, operating rules are developed using a K Nearest Neighborhood model for the real time water transfer operation. The results show the significant value of using the proposed algorithm and economic evaluation for water transfer projects.  相似文献   
5.
The effects of a two-dimensional (2D) electromagnetic bandgap substrate on the performance of a microstrip patch antenna are investigated. The microstrip patch antenna is placed on a defect in the electromagnetic bandgap substrate that localizes the energy under the antenna. Finite-difference time-domain calculations are employed to determine the effects of the substrate. The excitation frequency of the antenna near the resonance frequency of the defect mode can be used to control the coupling between antennas that are placed in an array  相似文献   
6.
Alam M  Aitchsion JS  Mojahedi M 《Applied optics》2011,50(15):2294-2298
Hybrid waveguides consisting of a metal plane separated from a high-index medium by a low-index spacer have recently attracted a lot of interest. TM and TE modes are guided in two different layers in these structures and their properties can be controlled in different manners by changing the waveguide dimensions and material properties. We examine the effects of different parameters on the characteristics of the two modes in such structures. We show that by properly choosing the dimensions, it is possible to cut off the TE mode while the TM mode can still be guided in a well-confined manner. Using this property of the hybrid guide, we propose a TM-pass polarizer. The proposed device is very compact and compatible with the silicon-on-insulator platform. Finite-difference time-domain simulation indicates that such a polarizer can provide a high extinction of the TE mode for a reasonable insertion loss of the TM mode.  相似文献   
7.
This paper uses He’s Homotopy Perturbation Method (HPM) to analyze the nonlinear free vibrational behavior of clamped-clamped and clamped-free microbeams considering the effects of rotary inertia and shear deformation. Galerkin’s projection method is used to reduce the governing nonlinear partial differential equation. to a nonlinear ordinary differential equation. HPM is used to find analytic expressions for nonlinear natural frequencies of the pre-stretched microbeam. A parametric study investigated the effects of design parameters such as applied axial loads and slenderness ratio. The effect of rotary inertia and shear deformation on the nonlinear natural frequency was investigated. For verification, a numerical approach was implemented to solve the nonlinear equation. of vibration. A comparison between analytical and numerical results shows that HPM can predict system nonlinear vibrational behavior significantly more accurately than previously used methods in the literature.  相似文献   
8.
In this paper, a mathematical modeling of a microcantilever gyroscope is presented considering the nonlinearities of the system due to electrostatic forces, fringing field, geometry and the inertial terms. The microgyroscope is actuated and detected by electrostatic methods and subjected to coupled bending oscillations. First a system of two nonlinear integro-differential equations is derived which describes flexural-flexural motion of electrostatically actuated and detected microbeam gyroscopes. Afterward, static deflection and pull-in instability of the microgyroscopes acted upon by DC voltages in both (driving and sensing) directions are studied for different parameters. The model’s predictions are in good agreement with the experimental data found in the literature and finite element simulation. Results show that the nonlinearities become important when pull-in happens.  相似文献   
9.
10.
Using a free-space configuration and a frequency-domain detection setup, group velocities of electromagnetic waves in a distributed Bragg reflector are investigated. Experimental data indicate that, near the regions of minimal transmission in our configuration, the group velocity is 2.1 times faster than the speed of light in vacuum. A transmission model based on diagonalization of the transfer matrix is used to compare the experimental data and the theoretical calculations, and good agreement is obtained. An overview of the experimental uncertainties and their effects on the measured quantities is provided  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号