首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   1篇
综合类   1篇
化学工业   1篇
能源动力   1篇
  2019年   1篇
  2018年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
近年来,随着火电机组参数的不断提高,再热蒸汽欠温问题时有发生,严重影响了机组热效率和经济性。本文针对再热蒸汽欠温现象,基于匹配炉膛吸热量与受热面吸热量比例的思想,提出了提高炉膛出口烟温、采用汽汽换热器、烟气再循环等措施,并详细叙述了三种措施的原理和优缺点,希望本文内容对锅炉设计及运行提供借鉴。  相似文献   
2.
基于密度泛函理论建立金属Co掺杂的铁基载氧体的微观模型,探究掺杂Co后模型表面的电子结构及反应特性的变化。首先,采用Material Studio软件中CASTEP模块构建并优化Fe2O3(104)的平板模型;其次,以Co原子分别替换模型表面不同配位数的Fe原子(Fe5f,Fe6f和Fe7f),构建Co在表面不同Fe原子位的掺杂模型(Co-Fe2O3(104));最后,计算纯净模型和掺杂模型的表面能、掺杂结合能、态密度以及掺杂位点原子的键长、键角和原子间距离等参数,考察CO在Fe2O3(104)和Co掺杂的Fe2O3(104)表面的等温吸附特性,并以CO分子为探针测试Co掺杂模型和纯净模型表面的氧化反应特性,获取反应路径、过渡态和反应活化能等信息。几何优化结果得到Co掺杂模型的稳定性顺序是:Co5f-Fe2O3(104)> Co6f-Fe2O3(104)> Co7f-Fe2O3(104),对应的结合能分别为-0.399 eV、-0.215 eV和0.487 eV,Co在Fe5f和Fe6f位的掺杂是放热过程,并且在Fe5f原子位的掺杂时放热较多,而在Fe7f原子的掺杂属于是吸热反应;Co掺杂改变了掺杂位点相邻O原子的平均键长LO-M(M代表Fe或Co),其中Co替换Fe7f后相邻O原子的LO-M增加了0.004 4 nm;掺杂Co后模型的总态密度(DOS)均向费米能级(0 eV)方向移动,在-8 eV~0 eV能量范围内离域性增强,而且Co5f-Fe2O3(104)模型体系靠近费米能级左边的填充态能量高于其他模型。等温吸附表明Co掺杂可以提高CO在模型表面的吸附量,并且存在吸附两种方式:-2.0 eV附近的峰为CO模型表面碱性位点的吸附峰,-0.75 eV附近的峰为CO在非碱性位点的吸附峰。CO在Co5f-Fe2O3(104)表面的吸附能(-0.851 eV)最大,而在Co7f-Fe2O3(104)表面的吸附需要外加能量(0.386 eV),CO在Co6f和Co7f掺杂位吸附的键长(LCO)比纯净模型表面的分别增加了0.000 4 nm和0.001 1 nm,表明Co掺杂表面对CO分子的活化作用较大;过渡态分析表明CO在Co掺杂表面氧化生成CO2的反应活化能均明显下降,其中CO在Co5f-Fe2O3(104)表面生成CO2的活化能最低,比在Fe2O3(104)表面的减少了0.518 eV,且相应的反应能增加了0.445 eV。研究表明,Co与Fe在其氧化物中成键结构不同,导致掺杂后模型表面的悬键增多,表面能增大,态密度向费米能级方向移动,提高了Fe2O3(104)表面活性,并且Co在低配位数Fe原子位的掺杂更有利于降低氧化CO的反应活化能。因此,通过掺杂金属Co提高铁基载氧体反应活性是可行的,其改性效果与掺杂活性成分的特性和掺杂方式有密切的关系。  相似文献   
3.
石司默  董长青  覃吴  王磊  李文艳  杨勇平 《化工学报》2012,63(12):4010-4018
提出了一种以粉煤灰为载体制备的新型铁基载氧体。采用同步热重分析仪、小型流化床以及DFT分别研究了新型载氧体的活性与热稳定性,发泡剂含量与反应温度以及粉煤灰主要组分之间的协同作用对新型载氧体性能的影响。研究结果表明,新型载氧体在以CO为燃料的化学链系统中具有较高的活性;新型载氧体较大的孔隙率以及粉煤灰多组分间的协同作用促使850℃下发泡剂含量为10.0%(质量)的新型铁基载氧体的最大转化率(84.9%)比Fe2O3/Al2O3的最大转化率(54.3%)高30%,且新型铁基载氧体在30个循环测试中表现出良好的热稳定性。载体制备采用的发泡剂含量以及反应温度对新型铁基载氧体性能影响很大,适当的发泡剂含量(约10%(质量))可提高新型载氧体性能。此外,高温下会造成载氧体的烧结现象。最后,采用密度泛函理论(DFT)研究了粉煤灰与载氧体之间的界面作用以及协同氧化CO的电子特性。计算结果表明,粉煤灰和Fe2O3之间的界面电荷转移使Fe2O3为电正性,促使CO在表面的相互作用,载体和活性组分之间的协同作用降低了载氧体与CO前线轨道能量差,进而促进了CO与Fe2O3的反应。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号