首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   1篇
化学工业   2篇
  2011年   2篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Aysar  NAJD  郑传超 《西安工业学院学报》2005,25(2):169-173,185
应用断裂潜能的概念,研究了在开裂的沥青道面上加铺沥青面层的抗裂性能,分析了玻璃纤雏加筋沥青混凝土、普通沥青混凝土以及抗滑面层的开裂行为.采用马歇尔试验与三点弯曲试验,通过马歇尔试验设计了玻璃纤维加筋沥青混合料,确定最佳纤维剂量.并分析了其高温抗开裂性能、利用三点弯曲试验测定在低温下玻璃纤维加筋沥青混凝土的强度与抗裂能力,利用断裂潜能的概念评估沥青混凝土抑制裂缝产生的性能.结果表明,加入玻璃纤维能有效地提高沥青混合料稳定度,改善高温沥青混凝土的抗变形能力而沥青用量不变.玻璃纤维加筋沥青混凝土(GFRAC)具有较大的断裂潜能,抗开裂性能好.断裂潜能提供了简单而有效的判定材料抗开裂能力的方法。  相似文献   
2.
Hydrodesulfurization (HDS) of crude oil has not been reported widely in the literature and it is one of the most challenging tasks in the petroleum refining industry. In order to obtain useful models for HDS process that can be confidently applied to reactor design, operation and control, the accurate estimation of kinetic parameters of the relevant reaction scheme are required. In this work, an optimization technique is used in order to obtain the best values of kinetic parameters in trickle-bed reactor (TBR) process used for hydrodesulfurization (HDS) of crude oil based on pilot plant experiment. The optimization technique is based on minimization of the sum of the square errors (SSE) between the experimental and predicted concentrations of sulfur compound in the products using two approaches (linear (LN) and non-linear (NLN) regressions).A set of experiments were carried out in a continuous flow isothermal trickle-bed reactor using crude oil as a feedstock and the commercial cobalt–molybdenum on alumina (Co–Mo/γ-Al2O3) as a catalyst. The reactor temperature was varied from 335 to 400 °C, the hydrogen pressure from 4 to 10 MPa and the liquid hourly space velocity (LHSV) from 0.5 to 1.5 h−1, keeping constant hydrogen to oil ratio (H2/oil) at 250 L/L.A steady-state heterogeneous model is developed based on two-film theory, which includes mass transfer phenomena in addition to many correlations for estimating physiochemical properties of the compounds. The hydrodesulfurization reaction is described by Langmuir–Hinshelwood kinetics. gPROMS software is employed for modelling, parameter estimation and simulation of hydrodesulfurization of crude oil in this work. The model simulations results were found to agree well with the experiments carried out in a wide range of the studied operating conditions. Following the parameter estimation, the model is used to predict the concentration profiles of hydrogen, hydrogen sulfide and sulfur along the catalyst bed length in gas, liquid and solid phase, which provides further insight of the process.  相似文献   
3.
One of the more difficult tasks in the petroleum refining industries that have not been considered largely in the literature is hydrotreating (HDT) of crude oil. The accurate calculations of kinetic models of the relevant reaction scheme are required for obtaining helpful models for HDT reactions, which can be confidently used for reactor design, operating and control. In this work, an optimization technique is employed to evaluate the best kinetic models of a trickle bed reactor (TBR) process utilized for hydrodenitrogenation (HDN) and hydrodemetallization (HDM) that includes hydrodevanadization (HDV) and hydrodenickelation (HDNi) of crude oil based on pilot plant experiments. The minimization of the sum of the squared errors (SSE) between the experimental and estimated concentrations of nitrogen (N), vanadium (V) and nickel (Ni) compounds in the products is used as an objective function in the optimization problem to determine the kinetic parameters.A series of experimental work was conducted in a continuous flow isothermal trickle bed reactor, using crude oil as a feedstock and the commercial cobalt-molybdenum on alumina (Co-Mo/γ-Al2O3) as a catalyst.A three-phase heterogeneous model based on two-film theory is developed to describe the behaviour of crude oil hydroprocessing in a pilot-plant trickle bed reactor (TBR) system. The hydroprocessing reactions have been modelled by power law kinetics with respect to nitrogen, vanadium and nickel compounds, and with respect to hydrogen. In this work, the gPROMS (general PROcess Modelling System) package has been used for modelling, simulation and parameter estimation via optimization. The model simulations results were found to agree well with the experiments carried out in a wide range of the studied operating conditions. The model is employed to predict the concentration profiles of hydrogen, nitrogen, vanadium and nickel along the catalyst bed length in three phases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号