首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
综合类   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
During the manufacturing process of dielectric materials used in electromagnetic engineering, the electromagnetic parameters are often spatially uncertain due to the processing technology, environmental temperature, personal operations, etc. Traditionally,the random field model can be used to measure the spatial uncertainties, but its construction requires a large number of samples.On the contrary, the interval field model only needs the upper and lower bounds of the spatially uncertain parameters, which requires much less samples and furthermore is easy to understand and use for engineers. Therefore, in this paper, the interval field model is introduced to describe the spatial uncertainties of dielectric materials, and then an interval finite element method(IFEM) is proposed to calculate the upper and lower bounds of electromagnetic responses. Firstly, the interval field of the dielectric material is represented by the interval K-L expansion and inserted into the scalar Helmholtz wave equations, and thus the interval equilibrium equations are constructed according to the node-based finite element method. Secondly, a perturbation interval finite element method is developed for calculating the upper and lower bounds of electromagnetic responses such as the electric strength and magnetic strength. Finally, the effectiveness of the proposed method is verified by three numerical examples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号