首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   3篇
综合类   1篇
建筑科学   7篇
矿业工程   1篇
一般工业技术   1篇
冶金工业   30篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2011年   3篇
  2010年   10篇
  2009年   2篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1995年   1篇
排序方式: 共有40条查询结果,搜索用时 406 毫秒
1.
Rock joints infilled with sediments can strongly influence the strength of rock mass. As infilled joints often exist under unsaturated condition, this study investigated the influence of matric suction of infill on the overall joint shear strength. A novel technique that allows direct measurement of matric suction of infill using high capacity tensiometers (HCTs) during direct shear of infilled joints under constant normal stiffness (CNS) is described. The CNS apparatus was modified to accommodate the HCT and the procedure is explained in detail. Joint specimens were simulated by gypsum plaster using three-dimensional (3D) printed surface moulds, and filled with kaolin and sand mixture prepared at different water contents. Shear behaviours of both planar infilled joints and rough joints having joint roughness coefficients (JRCs) of 8–10 and 18–20 with the ratios of infill thickness to asperity height (t/a) equal to 0.5 were investigated. Matric suction shows predominantly unimodal behaviour during shearing of both planar and rough joints, which is closely associated with the variation of unloading rate and volumetric changes of the infill material. As expected, two-peak behaviour was observed for the rough joints and both peaks increased with the increase of infill matric suction. The results suggest that the contribution of matric suction of infill on the joint peak normalised shear stress is relatively independent of the joint roughness.  相似文献   
2.
In this study, the extent of the smear zone and the reduction of permeability and water content within the smear zone were investigated using a large-scale consolidometer. The installation of vertical drains by means of a mandrel causes significant disturbance of the subsoil surrounding the mandrel, resulting in a smear zone. The extent of the smear zone for Moruya clay (New South Wales, Australia) was estimated on the basis of normalized permeability and the reduction of water content by taking undisturbed samples (horizontally and vertically) at different locations. This study reveals that a significant reduction in water content and horizontal permeability takes place towards the drain, whereas the variation in the vertical permeability is negligible. The smear zone for Moruya clay was found to be 2.5 times the equivalent radius of the mandrel with the horizontal permeability varying from 1.09 to 1.64, an average of 1.34 times smaller than that of the undisturbed zone. Finally, a correlation between the permeability decrease and water content reduction within smear zone is proposed.  相似文献   
3.
This paper describes the analytical formulation of a modified consolidation theory incorporating vacuum pressure, and numerical modeling of soft clay stabilized by prefabricated vertical drains, with a linearly distributed (trapezoidal) vacuum pressure for both axisymmetric and plane strain conditions. The effects of the magnitude and distribution of vacuum pressure on soft clay consolidation are examined through average time-dependent excess pore pressure and consolidation settlement analyses. The plane strain analysis was executed by transforming the actual vertical drains into a system of equivalent parallel drain walls by adjusting the coefficient of permeability of the soil and the applied vacuum pressure. The converted parameters are incorporated in the finite element code ABAQUS, employing the modified Cam-clay theory. Numerical analysis is conducted to study the performance of a full-scale test embankment constructed on soft Bangkok clay. The performance of this selected embankment is predicted on the basis of four different vacuum pressure distributions. The predictions are compared with the available field data. The assumption of distributing the vacuum pressure as a constant over the soil surface and varying it linearly along the drains seems justified in relation to the field data.  相似文献   
4.
A new, easy to implement, solution to the consolidation of multilayered soil based on the spectral method is presented. Combined vertical and radial drainage under instantaneous or single ramp loading is considered, ignoring well resistance. Flow in the vertical direction is based on the average hydraulic gradient at a particular depth which allows smear effects to be included. The excess pore-water pressure profile across all soil layers is described by a single expression calculated with common matrix operations. Average excess pore pressures within or across any number of layers are easily calculated from the single expression. The new model is verified against other solutions from the current literature indicating that the more general spectral method model can replace the separate solutions developed for specific problems.  相似文献   
5.
Understanding the complex mechanisms of stress transfer and strain accumulation in layers of track substructure under repeated wheel loading is essential to predict the desirable track maintenance cycle as well as the design of the new track. Various finite element and analytical techniques have been developed in the past to understand the behavior of composite track layers subjected to repeated wheel loads. The mechanical behavior of ballast is influenced by several factors, including the track confining pressure, type of aggregates, and the number of loading cycles. A field trial was conducted on an instrumented track at Bulli, New South Wales, Australia, with the specific aims of studying the benefits of a geocomposite installed at the ballast-capping interface, and to evaluate the performance of moderately graded recycled ballast in comparison to traditionally very uniform fresh ballast. It was found that recycled ballast can be effectively reused if reinforced with a geocomposite. It was also found that geocomposite can effectively reduce vertical and lateral strains of the ballast with obvious implications for improved track stability and reduced maintenance costs.  相似文献   
6.
This research study deals with the characterization of two-phase flow in a fractured rock mass. A comprehensive mathematical model with which to predict the quantity of each flow component in a single joint is developed. A joint with two parallel walls filled with layers of water and air (stratified) is analyzed. The effects of mechanical deformation of the joint, the compressibility of fluids, the solubility of air in water, and the phase change between fluids have been taken into account to develop analytical expressions which describe the behavior at the air–water interface. The model was calibrated using a newly designed two-phase (high-pressure) triaxial cell. Tests were conducted on fractured hard rock samples for different confining pressures with inlet water and inlet air pressures. As in single-phase flow, it was found both experimentally and theoretically, that the flow quantities of each phase decreases considerably with an increase in confining stress. The results also confirm that the effect of joint deformation and compressibility of fluids governs the flow volume of two-phase flow. Good agreement was obtained between the experimental data and numerical predictions.  相似文献   
7.
8.
In this technical note, the concept of constriction size in design is highlighted while elucidating some of the limitations of current professional guidelines that are only based on particle size ratios. The implications of the controlling constriction size, Dc35, and the self-filtering constriction size, Dc95, are elaborated on; Dc35=constriction size whereby 35% of the filter constrictions are finer than this, and Dc95=constriction size whereby 95% of the filter constrictions are finer than this. Combining the salient findings of two recent papers by Indraratna et al. in 2007 and Indraratna and Raut in 2006, a further refinement for filter design, i.e., Dc35/d85* ? 1, is introduced here based on the self-filtering base fraction and controlling constriction size of the filter, where the specific parameter d85*=value of d85 of the base soil grading curve modified by the self-filtering constriction size, Dc95. The proposed criterion is verified using several large-scale tests carried out at the University of Wollongong and numerous test data available in the literature.  相似文献   
9.
The applicability of Darcy's Law to two-phase flow has been discussed. Specialised triaxial equipment has been employed to separately inject two pore fluid components (air and water) into fractured rock specimens, so that two-phase flow behaviour can be studied at high axial and confining stresses. Improvements to recently developed two-phase high-pressure triaxial apparatus have enabled the authors to continue their study of air–water (i.e. unsaturated) flow in intact and fractured rock specimens under a wide range of stress conditions, similar to those encountered in underground mining operations. In this paper, a simplified stratified two-phase flow model is also presented that satisfactorily predicts flow behaviour in an inclined rock fracture over a range of linear laminar flow for particular capillary pressure relationships. The mathematical model is based upon the principles of conservation of mass and momentum, and relates the fracture aperture (et) to phase permeability (ki) using Poiseuille's law and the proposed ‘phase height’, hi(t), for water and air phases. The experimental approach used to verify the model predictions is described and the predicted results compared with the measurements. The experimental data confirmed the relationship between relative permeability and flow rate, with respect to two-phase flow conditions.  相似文献   
10.
This paper presents a three-dimensional (3D) and two-dimensional (2D) numerical analysis of a case study of a combined vacuum and surcharge preloading project for a storage yard at Tianjin Port, China. At this site, a vacuum pressure of 80?kPa and a fill surcharge of 50?kPa were applied on top of the 20-m-thick soft soil layer through prefabricated vertical drains (PVD) to achieve the desired settlements and to avoid embankment instability. In 3D analysis, the actual shape of PVDs and their installation pattern with the in situ soil parameters were simulated. In contrast, the validity of 2D plane strain analysis using equivalent permeability and transformed unit cell geometry was examined. In both cases, the vacuum pressure along the drain length was assumed to be constant as substantiated by the field observations. The finite-element code, ABAQUS, using the modified Cam-clay model was used in the numerical analysis. The predictions of settlement, pore-water pressure, and lateral displacement were compared with the available field data, and an acceptable agreement was achieved for both 2D and 3D numerical analyses. It is found that both 3D and equivalent 2D analyses give similar consolidation responses at the vertical cross section where the lateral strain along the longitudinal axis is zero. The influence of vacuum may extend more than 10?m from the embankment toe, where the lateral movement should be monitored carefully during the consolidation period to avoid any damage to adjacent structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号