首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
化学工业   2篇
能源动力   1篇
轻工业   4篇
一般工业技术   1篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
排序方式: 共有8条查询结果,搜索用时 93 毫秒
1
1.
采用常压炒籽、微波和压力炒籽预处理亚麻籽并压榨制油,分析探讨了不同预处理工艺对压榨亚麻籽油的气味、色泽、理化指标、营养成分含量、DPPH自由基清除能力、脂肪酸组成及氧化稳定性的影响。结果表明:未处理及微波、压力炒籽预处理所得压榨亚麻籽油的色泽、酸价和过氧化值等理化指标均优于目前常采用的常压炒籽(170℃,45 min),压力炒籽所得压榨亚麻籽油具有令人愉悦的浓香风味;采用压力炒籽(1. 0 MPa)和微波(亚麻籽水分含量17%,700 W,6 min)所得亚麻籽油的营养品质较好,DPPH自由基清除能力较强,且不同预处理工艺对亚麻籽油脂肪酸组成影响不大;经过常压炒籽(170℃,45 min)得到的压榨亚麻籽油氧化稳定性最好,压力炒籽(1. 0 MPa)其次。因此,利用压力炒籽技术提高压榨亚麻籽油的品质是可行的。  相似文献   
2.
针对亚麻籽油产品质检经常出现苯并(a)芘含量超标问题,通过模拟实验研究了炒籽压榨生产亚麻籽油工艺中炒籽温度、炒籽时间对压榨亚麻籽油中苯并(a)芘含量的影响规律和防控措施。结果表明:炒籽温度超过180℃后,炒籽温度越高,压榨亚麻籽油中苯并(a)芘含量越高,且苯并(a)芘含量超过国标限量值(10μg/kg)的炒籽时间越短,说明炒籽温度过高是出现产品苯并(a)芘含量超标的主要原因;热重分析实验发现亚麻籽在172~174℃有热失重速率谷值,超过该温度后,热失重速率快速升高,说明有机物大量裂解从而快速生成苯并(a)芘;结合炒籽实验和热重分析实验,防控苯并(a)芘含量超标的适宜炒籽温度为不高于170℃; 170℃炒籽75 min压榨得到的亚麻籽油苯并(a)芘含量低于食品安全国家标准限值(10μg/kg),可以作为有效防控苯并(a)芘含量超标的技术措施。  相似文献   
3.
以废弃汽车外轮胎热解后的副产物轮胎碳为原料,利用均匀沉淀法制备以轮胎焦(Tyre char,TC)为载体的负载型Ni/TC催化剂,采用EDX、SEM、XRD、TG、BET手段对催化剂进行了表征与分析,同时使用管式炉测试了Ni/TC催化剂在秸秆热解中的催化性能,并考察了热解温度,保温时间,镍负载量,使用时间对秸秆热解燃气重整效果的影响。研究结果表明;Ni/TC催化剂存在Ni-3ZnC_(0.7)结构,活性组分负载良好,分散均匀,热稳定性好,比表面积为51m~2·g~(-1)。催化剂活性测试显示:Ni/TC催化剂用于作物秸秆气化燃气重整具有极强的催化活性,可显著提高燃气中可燃气体含量;气化温度在750℃、保温时间20min、30%的Ni负载量时Ni/TC催化剂的催化效率最高,连续使用850min后,燃气中的H_2含量仍相对提高到50%以上,催化活性依然较强且趋于稳定。  相似文献   
4.
通过对废弃粉末活性炭(WPAC)进行热解再生实验,采用热重(TG)、红外分析(FTIR)、表面分析(BET)、X射线衍射(XRD)表征手段,分析了废弃粉末活性炭热解再生前后的比表面积、孔隙结构及再生过程中有机物分解的初步规律。同时比较了废弃粉末活性炭再生前后对亚甲基蓝(MB)的吸附性能,对WPAC热解再生效果进行了评价。实验得出的最佳热解再生条件是以氮气为载气,热解温度650℃,热解时间2h。在此再生条件下,再生炭(RPAC)的比表面积为1161.4m2/g,恢复到新鲜活性炭的94.5%;废弃粉末活性炭再生前后对亚甲基蓝的吸附等温线符合Langmuir模型,吸附容量为420.5mg/g,恢复到新鲜炭的89.6%。由此结果表明,WPAC经热解再生后表面化学性质、孔隙结构及吸附性能均得到有效恢复。  相似文献   
5.
从油料作物生产,油料预处理、油脂制取、储藏运输和实际使用等环节,阐释了食用油脂中苯并芘的产生来源,并提出了食用油脂在生产、加工和使用过程中苯并芘的防控措施及减控方法。  相似文献   
6.
不同作物秸秆热解及其差异性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以水稻、小麦、玉米、棉花、油菜5种农作物秸秆为研究对象,采用管式炉对其进行热解实验,探讨热解产气量的差异性。实验结果表明在5种生物质秸中,油菜秸热解产气率为0.28 L/g,热解产物中的CO和H2气体含量分别为31.6%和26.3%,原料热值与热解燃气中可燃气体的低位热值分别为12345.84 kJ/kg和10.51 MJ/m3,5项值在5种秸秆中均为最高。5种秸秆样品的SEM照片显示其表质层分布和筛管结构形状、大小均不相同;样品的C元素含量、O/C原子比率及颗粒结构的差异会影响其热解产气总量与产物中CO气体含量。  相似文献   
7.
以稻壳热解的副产物稻壳焦为原料,通过预处理、酸洗、焙烧、后处理等工艺流程,制备了结构细、纯度高的白色二氧化硅(SiO_2)固体粉末(RHCS),并对RHCS进行了表征与分析,采用均匀沉淀法以RHCS为载体制得镍铁催化剂(NiO-Fe_2O_3/RHCS),并采用热解炉考察该催化剂在稻壳中的催化热解活性。结果表明:SiO_2主要为无定形结构,纯度达96.5%;850℃高温煅烧后SiO_2结晶度约62%,颗粒结构疏松均匀,粒径1~10μm,比表面积149cm~2/g,平均孔径95nm;NiO-Fe_2O_3/RHCS在稻壳热解中具有较高的催化活性,可有效提高产品燃气品质,气体产量为0.36m~3/kg、H2含量9.18g/kg、可燃气体热值达到12.72kJ/m~3,具有较好的应用前景。  相似文献   
8.
采用不同温度对亚麻籽进行炒籽并压榨制油,对压榨亚麻籽油的感官品质、理化指标及营养成分进行分析,研究炒籽温度对压榨亚麻籽油品质的影响。结果表明:随着炒籽温度的升高,压榨亚麻籽油的气味从坚果芳香过渡到严重焦糊味,色泽加深,在195℃炒籽45 min时形成热榨亚麻籽油特有的浓香型风味;营养成分如VE、总酚以及甾醇含量随炒籽温度升高而逐渐减少,在255℃炒籽45 min时,3种营养成分的损失率分别为75. 7%、76. 5%和88. 9%;酸价、过氧化值、茴香胺值、K232值、K270值随炒籽温度升高而增加,且炒籽温度对压榨亚麻籽油中主要脂肪酸含量有显著影响;适当炒籽对压榨亚麻籽油的氧化稳定性是有利的;高温炒籽压榨亚麻籽油中的营养成分含量与其理化指标密切相关,进而共同影响压榨亚麻籽油的品质。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号