首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   6篇
化学工业   18篇
金属工艺   1篇
能源动力   1篇
轻工业   6篇
无线电   2篇
一般工业技术   3篇
冶金工业   1篇
自动化技术   4篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2013年   8篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
Silicate ceramics were shaped using tape casting (TC) and freeze tape casting (FTC) processes from three clays labeled HCR, KORS, and KCR. These clays exhibited mass content of 77% halloysite–10 Å, 29% kaolinite, and 98% kaolinite minerals, respectively. After casting the slurries, the dried tapes were sintered at 1200°C. The microstructure changes were characterized before and after sintering using scanning electron microscopy. The apparent porosity of TC samples was lower (36–47 vol.%) compared to values obtained with FTC samples (67–79 vol.%). The latter samples exhibited a highly textured porosity, with micron-sized pores aligned perpendicular to the tape surfaces. Upon sintering, the porosity of TC samples tended to decrease conversely to the case of FTC samples. Such behavior seemed related to the simultaneous effect of organic additives and ice templating. Consequently, the FTC samples showed a relatively low mechanical strength of 3–7 MPa and thermal conductivity of .14– .22 W m−1 K−1. After sintering, the mullite crystallization contributed to strengthen the bulk materials, helping to compensate for the detrimental effect of porosity on the stress to rupture and on thermal conductivity values.  相似文献   
2.
In this review we present the results of our literature investigation into the electrical and thermal properties of carbon nanotube polymer composites. A short selection of data relating to conductive polymer composites with various fillers is provided for comparison. The effects of filler properties such as type and size, the use of hybrid fillers, fabrication methods for polymer composites and the importance of the modeling of the electronic and thermal transport mechanisms are discussed, as are more general factors influencing the properties of these composites. This review represents a comprehensive survey and constructive study and should serve as a useful reference tool for industrial and academic researchers working in this field. © 2017 Society of Chemical Industry  相似文献   
3.
Summary The curing of different epoxy-amine model systems which present only gelification and/or vitrification processes has been followed with the evolution of their viscoelastic and electrical behaviours during the network formation. Some attempts are performed to correlate the significant evolution of the mechanical and electrical parameters with the physico-chemical changes of these well defined chemical systems during their hardening and complete curing.  相似文献   
4.
Global thermal transformation of kaolinite–muscovite mixtures containing at most 25 mass % of muscovite was studied up to 1,100 °C. Quantitative and qualitative DTA analysis reveals a great intereaction between the two phylosilicates above 900 °C, which is characterized by an enhancement of spinodal demixion contribution during the structural reorganization of metakaolinite. The corresponding enthalpy variation are respectively −32 ± 1 kJ/mol and −15 ± 1 kJ/mol of kaolinite for pure kaolinite and for the mixture containing 15 mass % of muscovite. This interaction is mainly correlated with the diffusion of potassium ions from muscovite platelets into metakaolinite structure. The resulting consequence is an enhancement of mullite crystallization and grain growth at 1,050 °C (earlier than in the case of pure kaolinite mineral).  相似文献   
5.
Summary Phenylacetylene (PhA) is polymerized by the dicationic nickel complex Ni(MeCN)6(BF4)2 associated with AlEt2Cl as co-catalyst. The production of 200g of polymer per gram of nickel per hour represents a typical activity of this system. Under our experimental conditions, the polymer displays an exclusive trans structure. The molecular weight distribution of the polymer is polymodal (5000 g.mol−1 and 200 g.mol−1). The highest average molecular weight fraction (5000 g. mol−1) represents the highest published value for polyphenylacetylene (PPA) where a nickel catalyst is employed. The electrical conductivities vary between 10−7 and 10−16 S.cm−1, and are characteristic of a semi-conductor polymer. Equivalent values are cited in the literature only in the case of doped PPA. Experimental observations enabled us to propose a mechanism for the formation of the active species through the reaction of Ni(MeCN)6(BF4)2 with AlEt2Cl. Received: 13 September 2001/Revised version: 10 January 2002/ Accepted: 11 January 2002  相似文献   
6.
The present study aimed at using plant waste (Musa Paradisiaca) for manufacturing clay-based ceramics in order to promote lower sintering temperature while preserving the properties of use. Two kaolinic-illitic clays (NZ1 and KO) from Central African Republic were used mixed with 1 to 10 mass% of the plant waste (MP). The clays and the waste exhibited accessory phases: quartz and iron oxides, and K2O respectively. MP was collected, dried and sieved (<100 μm) previously to its mixture with clays. According to the sintering behavior of KO and NZ1 derived from thermodilatometry, the densification was obtained after firing at 1200°C. Results showed that open porosity decreased from 35% to 17% with increasing temperature in the range 900 to 1200°C for KO and NZ1. This porosity remained in the range 30%-40% while increasing the MP content (firing at 1000°C for 1h.). The optimized MP content was 3 and 5 mass% for KO and NZ1 clay materials respectively. The compressive strength and thermal conductivities were improved compared to clay samples without MP fired at 1200°C. Moreover a significant decrease in the sintering temperature was achieved, leading to energy saving in line with sustainability issues.  相似文献   
7.
The present work aimed to investigate the processing of textural clay based materials using tape casting together with freezing. Two model raw materials were used, namely: BIP kaolin from France and ABM montmorillonite from Mediterranean region. The mixtures of both clays were studied, whereby, the amount of montmorillonite was 0, 5, 10, 20 or 50 mass%. After tape casting, the as-obtained green bands were frozen into liquid nitrogen, lyophilized and then fired at 1050 °C or 1200 °C.The amount of montmorillonite appeared as a critical parameter that controls the cohesion of the dry products. For montmorillonite content ≥20 mass%, the products exhibited multiple cracks after lyophilisation. With lower montmorillonite content, the cohesion of the dry products was satisfactorily and a macroscopic cross-linked surface texturation was observed. After calcination at 1050 °C or 1200 °C, the texturation appeared well defined. Moreover, calcination at 1200 °C increased the densification of products and the occurrence of a glassy phase was noted.The combination of both tape casting and freezing (freeze tape casting) is a promising way to develop various clay-based and composites materials exhibiting unique microstructure organization and characteristics with potential application in the field sustainable and environmentally friendly filtration, adsorption or catalysis.  相似文献   
8.
9.
The present work aims at studying the effect of the sintering temperature and magnesite addition on the structure and final properties of silicate ceramics tapes. A kaolinitic clay from Algeria was selected and mixed with different magnesite contents (≤12 mass%). Tape casting process was used to produce the green tapes in an aqueous system with optimized amount of surfactants. The green tapes were fired from 1000°C to 1200°C using a dwelling time of 30 minutes. The effect of the dwelling time was investigated for a firing temperature of 1200°C namely: 30 minutes, 1 hour 30 minutes and 3 hours for samples with 6 and 12 mass% of magnesite. Regarding firing conditions, crystalline phases, thermal conductivity, porosity, and flexural strength were analyzed. The results showed that increasing the sintering temperature to 1200°C tended to significantly decrease the total porosity of samples, which led to the improvement of the stress to rupture values. Specimens with 6 and 12 mass% sintered during 3 hours exhibited highest stress to rupture values (≈117 MPa) and lowest thermal conductivity (<0.2 W.m−1.K−1) and moderate open porosity (27%). The as-obtained ceramics appeared promising for further utilization in refractory industry, thanks to the presence of both cordierite and mullite phases.  相似文献   
10.
With the aim of developing dielectric polymers containing CN groups with strong dipole moment, alternating and statistical copolymers of the cyano monomers vinylidene cyanide (VCN), acrylonitrile and methacrylonitrile with methyl α‐acetoxyacrylate (MAA) were synthesized and characterized. The copolymer's composition and microstructure were analysed by NMR spectroscopy, SEC and elemental analysis. The reactivity ratios calculated from the Qe Alfrey–Price parameters for these copolymers indicated the alternating and statistical structures confirmed by NMR analysis. The copolymers have glass transition temperatures Tg in the range 83–146 °C and are stable up to 230 °C. The thermal stability of the copolymers depends on the nature of the cyano monomers. Their molecular dynamics were investigated by dielectric relaxation spectroscopy. We revealed a weak relaxation β at sub‐Tg temperature for poly(VCN‐co‐MAA) usually originating from molecular motions that are restricted to the scale of a few bond lengths. Strong α‐relaxation processes occurred above Tg for these copolymers. This primary relaxation was associated with cooperative movements of the polar groups (CN) at the time of mobility of the principal chains. The activation energy of the α‐relaxation process was also calculated. The values of the dielectric increment Δε for these copolymers were determined by Cole–Cole plots and indicated that the copolymers exhibit interesting dielectric properties compared with similar cyano materials. The polarity–permittivity relationship was also established. © 2012 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号