首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   18篇
电工技术   10篇
综合类   1篇
化学工业   183篇
机械仪表   8篇
建筑科学   2篇
能源动力   10篇
轻工业   14篇
无线电   11篇
一般工业技术   39篇
冶金工业   31篇
原子能技术   4篇
自动化技术   21篇
  2023年   3篇
  2022年   1篇
  2021年   10篇
  2020年   1篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   15篇
  2013年   13篇
  2012年   13篇
  2011年   13篇
  2010年   16篇
  2009年   21篇
  2008年   16篇
  2007年   17篇
  2006年   19篇
  2005年   10篇
  2004年   10篇
  2003年   21篇
  2002年   12篇
  2001年   9篇
  2000年   9篇
  1999年   5篇
  1998年   18篇
  1997年   10篇
  1996年   7篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
1.
2.
The densification and microstructure development of ZnO containing Zn7Sb2O12, ZrO2, and aggregated ZnO were investigated to elucidate the effect of nondensifying inclusions on the sintering of ceramic/ceramic composites. The inclusion retarded the densification, and the degree of retardation was found to depend on the chemical species of inclusion; Zn7Sb2O12 had the largest effect, followed by ZrO2 and then aggregated ZnO last. The experimental results for aggregated ZnO was explained by the theory which predicts the generation of backstresses. The backstresses give a less significant effect on the densification. For Zn7Sb2O12 and ZrO2, the microstructure of the matrix varied with distance from an inclusion particle; much porosity was observed in the region surrounding the inclusion. Circumferential voids, which are responsible for the suppression of densification, form during the initial stage of sintering. Inclusion particles generate an anchoring effect which retards the densification of the matrix immediately surrounding the inclusion particle during the intermediate stage.Supported by the Inamori Foundation.  相似文献   
3.
Attempts were carried out to enhance the surface hydrophilicity of poly(L ‐lactide), that is, poly(L ‐lactic acid) (PLLA) film, utilizing enzymatic, alkaline, and autocatalytic hydrolyses in a proteinase K/Tris–HCL buffered solution system (37°C), in a 0.01N NaOH solution (37°C), and in a phosphate‐buffered solution (100°C), respectively. Moreover, its chain‐scission mechanisms in these different media were studied. The advancing contact‐angle (θa) value of the amorphous‐made PLLA film decreased monotonically with the hydrolysis time from 100° to 75° and 80° without a significant molecular weight decrease, when enzymatic and alkaline hydrolyses were continued for 60 min and 8 h, respectively. In contrast, a negligible change in the θa value was observed for the PLLA films even after the autocatalytic hydrolysis was continured for 16 h, when their bulk Mn decreased from 1.2 × 105 to 2.2 × 104 g mol?1 or the number of hydrophilic terminal groups per unit weight increased from 1.7 × 10?5 to 9.1 × 10?5 mol g?1. These findings, together with the result of gravimetry, revealed that the enzymatic and alkaline hydrolyses are powerful enough to enhance the practical surface hydrophilicity of the PLLA films because of their surface‐erosion mechanisms and that its practical surface hydrophilicity is controllable by varying the hydrolysis time. Moreover, autocatalytic hydrolysis is inappropriate to enhance the surface hydrophilicity, because of its bulk‐erosion mechanism. Alkaline hydrolysis is the best to enhance the hydrophilicity of the PLLA films without hydrolysis of the film cores, while the enzymatic hydrolysis is appropriate and inappropriate to enhance the surface hydrophilicity of bulky and thin PLLA materials, respectively, because a significant weight loss occurs before saturation of θa value. The changes in the weight loss and θa values during hydrolysis showed that exo chain scission as well as endo chain scission occurs in the presence of proteinase K, while in the alkaline and phosphate‐buffered solutions, hydrolysis proceeds via endo chain scission. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1628–1633, 2003  相似文献   
4.
Hideto Tsuji  Ippei Fukui 《Polymer》2003,44(10):2891-2896
Poly(l-lactide) (i.e. poly(l-lactic acid) (PLLA)) and poly(d-lactide) (i.e. poly(d-lactic acid) (PDLA)) and their equimolar enantiomeric blend (PLLA/PDLA) films were prepared and the effects of enantiomeric polymer blending on the thermal stability and degradation of the films were investigated isothermally and non-isothermally under nitrogen gas using thermogravimetry (TG). The enantiomeric polymer blending was found to successfully enhance the thermal stability of the PLLA/PDLA film compared with those of the pure PLLA and PDLA films. The activation energies for thermal degradation (ΔEtd) were evaluated at different weight loss values from TG data using the procedure recommended by MacCallum et al. The ΔEtd values of the PLLA/PDLA, PLLA, and PDLA films were in the range of 205-297, 77-132, and 155-242 kJ mol−1 when they were evaluated at weight loss values of 25-90% and the ΔEtd value of the PLLA/PDLA film was higher by 82-110 kJ mol−1 than the averaged ΔEtd value of the PLLA and PDLA films. The mechanism for the enhanced thermal stability of the PLLA/PDLA film is discussed.  相似文献   
5.
6.
Microporous high‐density polyethylene (HDPE) and low‐density polyethylene (LDPE) hollow fiber membranes were prepared from polyethylene–diisodecyl phthalate solution via thermally induced phase separation. Effect of the polyethylene density on the membrane structure and performance was investigated. The HDPE membrane showed about five times higher water permeability than the LDPE membrane because it had the larger pore and the higher porosity at the outer membrane surface. The formation of the larger pore was owing to both the initial larger structure formed by spinodal decomposition and the suppression of the diluent evaporation from the outer membrane surface due to the higher solution viscosity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 471–474, 2004  相似文献   
7.
Phase separation rate during porous membrane formation by immersion precipitation was investigated by light scattering in a polyimide/N‐Methylpyrrolidone (NMP)/water system. In the light scattering measurement, plots of scattered intensity against scattered angle showed maxima in all cases, which indicated that phase separation occurred by a spinodal decomposition (SD). Characteristic properties of the early stage of SD, such as an apparent diffusion coefficient Dapp and an interphase periodic distance Λ, were obtained. The growth process of Λ was also followed by light scattering. The growth rate had the same tendency as Dapp when water content in the nonsolvent bath and the polymer concentration in the cast solution were changed. The pore size of the final membrane increased with decreasing water content, which was opposite to the tendency of Λ growth rate. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 292–296, 2003  相似文献   
8.
A series of novel hexene‐1–propylene random copolymers with isotactic sequence of propylene was synthesized with a MgCl2‐supported Cr(acac)3 catalyst. The molecular weight distribution of copolymers and homopolymers was considerably narrower than that of typical polyolefins produced by heterogeneous Ziegler–Natta catalysts. The crystallizability of the copolymers having a propylene‐unit content of more than 50 mol % drastically decreased with decreasing propylene‐unit content, and the copolymers with a propylene content of less than 50 mol % were completely amorphous. In the present novel type of random copolymers with crystallizable and noncrystallizable units, a single glass transition was observed between pure polypropylene and polyhexene‐1, and a major component was found to govern the final morphology and the mechanical characteristics. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2949–2954, 2004  相似文献   
9.
The use of an agent in the environment, as in medical treatment, welfare, the construction field, and the home, is examined. It is necessary for the agent to be able to work cooperatively with a human, and that may be a problem. Therefore, this study pays attention to the phenomenon that is called entrainment. This is the phenomenon where the rhythm of a certain person and the partner in the communication is synchronized. The purpose of this study is to perform a basic examination into applying an entrainment in order to realize cooperation in operations between a human and an agent. Since many human rhythms are expressed by a nonlinear oscillator, we simulated limited cycle oscillators, which are one of two nonlinear oscillators that cause interactions between agents, as the basic examination for this achievement. Consequently, entrainment of limited cycle oscillators with rhythms which differ has been checked in certain conditions. As a result, the possibility that cooperative movement could be gained was suggested.  相似文献   
10.
A new analytical method with high speed processing in the time-frequency domain is presented. In this method, sine and cosine waves with an established frequency and multiple periods are used, and we call these waves “cutting-out waves.” We all the frequency the “established frequency,” and we call the number of periods of the cutting-out wave the “number of periods.” The inner product of the cutting-out wave and the signal are calculated, and a signal element with a frequency near the established frequency is detected. We call the unit that detects the signal element an “auditory cell.” There are many auditory cells, and they have an established frequency which differs very little. The design of this method is the arrangement of the auditory cells. There are three parameters in the design, and these parameters are a sampling frequency, the number of periods, and the increasing rate of the established frequencies. In this article, we show the selection of these parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号