首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   21篇
电工技术   3篇
化学工业   60篇
金属工艺   1篇
建筑科学   3篇
能源动力   1篇
轻工业   8篇
无线电   10篇
一般工业技术   7篇
冶金工业   9篇
原子能技术   1篇
自动化技术   2篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   7篇
  2014年   5篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
排序方式: 共有105条查询结果,搜索用时 27 毫秒
1.
A real-time failure analysis technique for ULSI circuits using photon emission is proposed. This technique utilizes a photon detection system combined with a circuit tester. Improved failure detection is achieved because the tester can bias arbitrary blocks in the ULSI chip. Detecting and correct process defects and design errors improves the reliability of the ULSI chip  相似文献   
2.
Using the photonic band gap in photonic crystals, the fundamental waveguide structures for the light wavelength range have been developed. Based on the fine structure of these many functional devices have been proposed by analytical or numerical simulation methods and the experiments of trial manufacture. In this paper, the treatment of chiral dielectric in the Condensed Node Spatial Network for the vector potential is explained, and we show the polarization plane rotation property in air‐hole and pillar type photonic crystal waveguide structures with the chiral medium substrate. Then, we show the fundamental advantage of the air‐hole type photonic crystal waveguide structure in application to a mode converter. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(1): 7–14, 2005; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/eej.20098  相似文献   
3.
The effect of the addition of microbubbles on the formation of silver nanoparticles produced in an ultrasonic radiation-mediated process was investigated. The addition of microbubbles with an area-based median diameter of 26.0?µm and a bubble volume density of 0.18?cm3/L significantly increased the silver nanoparticle formation rate during the sonochemical process. The size distribution of the silver nanoparticles was largely unaffected by the addition of the microbubbles. The influence of changes in the microbubble volume density on the formation of the silver nanoparticles was also investigated; it was confirmed that the rate of formation of the silver nanoparticles increased moderately with increasing volume density. The gradient in absorption spectra was approximately 30 times larger for the case when microbubbles (median diameter: 28.3?µm) were added at 0.74?cm3/L, compared with the case without microbubbles. The results suggested that the microbubbles provided reaction sites similar to cavitation bubbles in the ultrasonic reaction.  相似文献   
4.
The mechanism of pore formation by selective decomposition of adamantane unit in an ABA‐type triblock copolymer derived from 4,4‐(hexafluoroisopropylidene)diphthalic anhydride‐2,3,5,6‐tetramethyl‐1,4‐phenylenediamine (6FDA‐TeMPD) and poly(2‐methyl‐2‐adamantylmethacrylate) (PMAdMA) was investigated on this basis. This study aims to developing a novel method of material design for high‐precision gas separation membranes and application to electric devices by improving dielectric constant. Scanning electron microscopy images showed that the membrane structure changed considerably after heating; the difference increased with the increase in adamantane content. Interestingly, the internal structure of Block(36 mol%6FDA‐TeMPD/64 mol%PMAdMA) membrane was almost unchanged although its surface structure was changed. These results suggest that the mechanism of formation of porous membrane involves the decomposition of adamantane unit from surface. In addition, more adamantane units inside the membrane were discharged to the surface of the membrane through a path formed by decomposed adamantane units. POLYM. ENG. SCI., 56:1191–1200, 2016. © 2016 Society of Plastics Engineers  相似文献   
5.
The preparation and characterization of a biobased electromagnetic absorbing composites derived from natural lacquer as a renewable resource with microwave‐absorption fillers, including Ni–Zn ferrite and carbonyl iron (CI) as magnetic metals and soot and carbon nanotube (CNT) as carbon materials, were investigated in terms of the gel content, hardness, drying properties, and electromagnetic absorption properties. Interestingly, composites with ferrite and CI contained up to 320 and 550 wt %, respectively, of these compounds. This quite high loading capacity of the metal fillers in a natural‐lacquer base could have been due to the high compatibility between the filler and the natural lacquer; this indicated that the natural lacquer worked as a binder for these metals. The morphology of the biobased composite was characterized by scanning electron microscopy. The electromagnetic absorption properties of composites were characterized in the frequency range from 0.05 and 20 GHz by the reflection loss (RL) measurement method in terms of the kind of fillers and filler loading. The natural lacquer did not affect the absorption properties of the fillers. Biobased composites showed over 99% electromagnetic absorption in the frequency range 3.0–4.0 GHz for 280 wt % ferrite and 8.9–9.7 GHz for 200 wt % CI. Conversely, 10 and 20 wt % soot exhibited good performance (RL < ?20 dB) between 16.5 and 17.3 and between 8.8 and 9.2 GHz, respectively. The areas with RL values of less than ?20 dB of the CNT composites were 10.4–11.0 GHz for 5 wt % and 14.6–15.2 GHz for 10 wt %. Hence, natural lacquer can be used as a binder material for electromagnetic absorption composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44131.  相似文献   
6.
The substrate specificities of three molluscan sulfatases (E.C. 3.1.6.1; snail, abalone, and limpet origins) were investigated with assorted p-nitrophenyl (pNP) di-O-sulfonated beta-D-galactopyranosides and beta-lactosides [3,6-SO(3) Gal (1), 3',6'-SO(3) Lac (2), 4, 6SO(3) Gal (3), 2,6-SO(3) Gal (4), 3,4-SO(3) Gal (5), and 3,6-SO(3) GalNAc (6); Ac, acetyl; Gal, galactose; Lac, lactose] together with mono-O-sulfonated beta-D-galactopyranoside [pNP 3SO(3)-Gal (7)] and tri-O-sulfonated alpha-D-galactopyranoside [2,3,6-SO(3)-alpha-Gal (11)]. Some notable differences between the substrate specificity of the three sulfatases were disclosed; snail sulfatase hydrolyzed the 3O- and 2O-sulfo groups of 1 and 4, respectively, to afford 6SO(3) Gal (9) in high yields, while the abalone enzyme did not act on 4. Only the limpet enzyme could cleave the 3O-sulfo groups of 7 to give pNP beta-galactoside. In contrast, every enzyme could utilize 11 as a good substrate to afford a mixture of 6SO(3)-alpha-Gal (13) and 2,6-SO(3) alpha-Gal (12). None of the enzymes could cleave the O-sulfo groups of 5 and 6, which indicates that a primary 6O-sulfo group tends to promote the enzymatic hydrolysis of O-sulfo groups at the secondary positions.  相似文献   
7.
Bipolar membrane electrodialysis is applied to CO2 recovery from alkaline carbonate solution. CO2 in flue gas is captured by an alkaline hydroxide absorbing solution to form an alkaline carbonate solution. The captured CO2 is recovered from the alkaline carbonate solution via bipolar membrane electrodialysis, and the alkaline solution is regenerated simultaneously. To reduce the power requirement for CO2 recovery, this study considers optimal design and operation. Three membrane arrangements were compared, and the results indicate the membrane arrangement comprising a bipolar membrane and cation exchange membrane is the most energy saving. With further optimization of operation conditions, the minimum power requirement for CO2 recovery was reduced to 2.1 MJ/kg‐CO2 (or 2.1 GJ/t‐CO2). © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   
8.
Surface modification of poly(lactic acid) (PLA) film is performed via 172 nm excimer lamp irradiation. Effects on water vapor solubility and physical properties via vacuum ultraviolet (VUV) irradiation are studied systematically. After VUV irradiation, water vapor solubility increases approximately 11–43% in the low‐pressure region and approximately 20–38% in the high‐pressure region as surface hydrophilicity increased. The increase is attributed to hydrogen bonding with the carboxyl groups because of VUV radiation. The modified layer is significantly swelling after water vapor sorption. The hydrophilic layer forms a thickness of 2–3 μm from the irradiated surface via VUV radiation, but no changes are observed inside the irradiated film. Therefore, PLA film solubility after irradiation is enhanced by hydrophilicity and the swelling effect of the surface. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42200.  相似文献   
9.
Mutational analysis of the pyridoxal 5′‐phosphate (PLP)‐dependent enzyme PctV was carried out to elucidate the multi‐step reaction mechanism for the formation of 3‐aminobenzoate (3‐ABA) from 3‐dehydroshikimate (3‐DSA). Introduction of mutation K276R led to the accumulation of a quinonoid intermediate with an absorption maximum at 580 nm after the reaction of pyridoxamine 5′‐phosphate (PMP) with 3‐DSA. The chemical structure of this intermediate was supported by X‐ray crystallographic analysis of the complex formed between the K276R mutant and the quinonoid intermediate. These results clearly show that a quinonoid intermediate is involved in the formation of 3‐ABA. They also indicate that Lys276 (in the active site of PctV) plays multiple roles, including acid/base catalysis during the dehydration reaction of the quinonoid intermediate.  相似文献   
10.
BACKGROUND: ABA‐type poly(methyl methacrylate) (PMMA) and fluorine‐containing polyimide triblock copolymers are potentially beneficial for electric materials. In the work reported here, triblock copolymers with various block lengths were prepared from fluorine‐containing difunctional polyimide macroinitiators and methyl methacrylate monomer through atom‐transfer radical polymerization. The effects of structure on their solid and thermal properties were studied. RESULTS: The weight ratios of the triblock copolymers derived using thermogravimetric analysis were shown to be almost identical to the ratios determined using 1H NMR. The solid properties (film density and maximum d‐spacing value) and thermal properties (glass transition and thermal expansion) were shown to be strongly dependent on the weight ratios of both PMMA and polyimide components. Furthermore, a porous film, which showed a lower dielectric constant of 2.48 at 1 MHz, could be prepared by heating a triblock copolymer film to induce the thermal degradation of the PMMA component. CONCLUSION: The use of the polyimide macroinitiator was useful in the preparation of ABA‐type triblock copolymers to control each block length that influences the solid and thermal properties. Additionally, the triblock copolymers have great potential in preparing porous polyimides in the application of electric materials as interlayer insulation membranes of large‐scale integration. Copyright © 2009 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号