首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   5篇
化学工业   7篇
轻工业   1篇
水利工程   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
排序方式: 共有9条查询结果,搜索用时 276 毫秒
1
1.
Acute lung injury (ALI) afflicts approximately 200,000 patients annually and has a 40% mortality rate. The COVID-19 pandemic has massively increased the rate of ALI incidence. The pathogenesis of ALI involves tissue damage from invading microbes and, in severe cases, the overexpression of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). This study aimed to develop a therapy to normalize the excess production of inflammatory cytokines and promote tissue repair in the lipopolysaccharide (LPS)-induced ALI. Based on our previous studies, we tested the insulin-like growth factor I (IGF-I) and BTP-2 therapies. IGF-I was selected, because we and others have shown that elevated inflammatory cytokines suppress the expression of growth hormone receptors in the liver, leading to a decrease in the circulating IGF-I. IGF-I is a growth factor that increases vascular protection, enhances tissue repair, and decreases pro-inflammatory cytokines. It is also required to produce anti-inflammatory 1,25-dihydroxyvitamin D. BTP-2, an inhibitor of cytosolic calcium, was used to suppress the LPS-induced increase in cytosolic calcium, which otherwise leads to an increase in proinflammatory cytokines. We showed that LPS increased the expression of the primary inflammatory mediators such as toll like receptor-4 (TLR-4), IL-1β, interleukin-17 (IL-17), TNF-α, and interferon-γ (IFN-γ), which were normalized by the IGF-I + BTP-2 dual therapy in the lungs, along with improved vascular gene expression markers. The histologic lung injury score was markedly elevated by LPS and reduced to normal by the combination therapy. In conclusion, the LPS-induced increases in inflammatory cytokines, vascular injuries, and lung injuries were all improved by IGF-I + BTP-2 combination therapy.  相似文献   
2.
The aim f this work is to study the effect of nanotubes on flammability properties of epoxy/glass composites. Multiwalled carbon nanotubes (MWNT) and its functionalized derivative (amino functionalized nanotubes) were incorporated into epoxy resin. To disperse MWNTs in the epoxy resin, different ways were employed. Microscopic observations showed that, the best dispersion state was gained by using ultrasonication method and high shear flow simultaneously. Thermal resistance of cured epoxy resins containing various amounts of nanotubes (0.25–0.7 wt %), was investigated by thermo gravimetric analysis (TGA). Introducing MWNTs and amino‐MWNTs to samples increased the initial thermal decomposition temperature for about 32 and 37°C, respectively. LOI measurements of composite samples showed an increase up to 32. Cone calorimetry test was carried out on epoxy/glass and epoxy/glass containing 0.5% MWNT. The results showed that, introducing 0.5% MWNTs decreases maximum average rate of heat emission for about 26%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39849.  相似文献   
3.
The interrelation between crosslinking and morphology is investigated for an immiscible blend of polylactic acid (PLA) and acrylic rubber (ACM). The blends are prepared by solution mixing and static crosslinking is used to avoid the simultaneous effect of the flow field that occurs in dynamic vulcanization. It is carried out at different temperatures, times, and curing agent contents. Scanning force microscopy (SFM) and polarized optical microscopy are used to determine the morphology of the blends. The chemical interactions and viscoelastic properties of the blends after crosslinking are also studied using infrared spectroscopy and rheological tests, respectively. Before crosslinking, SFM shows matrix‐droplet morphology for the samples that it is retained after that for the blend with 30 wt% ACM; however, it is changed to cocontinuous one in the blend with 50 wt% ACM. Partially, grafting of PLA on the crosslinked ACM is confirmed by Fourier transform infrared spectroscopy. The rheological results show that the incorporation of ACM to the PLA slows down the chain relaxation and vulcanization intensifies this effect. A model is proposed to explain the morphology evolution during static crosslinking of an immiscible blend.  相似文献   
4.
In this work, a novel polymer blend containing poly(lactic acid) (PLA) as a biocompatible and biodegradable thermoplastic and acrylic rubber (ACM) is prepared and the miscibility and phase structure of the blend and its nanocomposite (PLA/ACM/nanosilica) are investigated through theoretical and experimental methods. To predict the phase diagram of the blend, a compressible regular solution model was employed, in which an upper critical solution temperature was observed. The model predicted that PLA/ACM blends are immiscible over the whole composition range at temperatures below 260 °C. Performing scanning force microscopy on the blend showed phase separated structures for the blends containing different amounts of the PLA and ACM. This was in accordance with the results of dynamic mechanical analysis, which revealed two distinct glass transition temperatures for the studied blends. The effect of nanometer sized silica particle on morphology and rheological properties of these blends was also investigated. Scanning force microscopy results showed much reduction of droplet size in the blends containing 2 wt % nanosilica. This was attributed to the suppression effect of nanosilica on the droplets coalescences. Rheological measurements confirmed the interaction of both components with the silica nanofiller. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45499.  相似文献   
5.
Understanding the crystallization process of polymer blends is of great importance for designing their process conditions, especially when the crystallization occurs during heating, so‐called cold crystallization. In this paper, the cold crystallization behavior of poly(lactic acid) (PLA) in its blends with acrylic rubber (ACM) was studied as a function of ACM content, using various techniques including differential scanning calorimetry, polarized optical microscopy and rheological methods. It was found that the addition of 10 wt% ? 20 wt% ACM to the PLA accelerated its cold crystallization. However, on using a greater amount of ACM up to 30%, the rate of crystallization was not further increased. In the ACM‐rich blends, the crystallizable PLA domains were distributed inside the amorphous ACM matrix and consequently confined crystallization occurred. The observed effects are discussed in terms of the interplay between chain mobility enhancement and the influence of phase boundaries. © 2017 Society of Chemical Industry  相似文献   
6.
7.
In this study, the effect of micro and nano silica and their combination on mechanical and thermal properties of Chlorosulfonated Polyethylene compounds were investigated. Cure characteristics were studied using a Monsanto Moving Die Rheometer at 155°C. Incorporation of nano silica accelerated the vulcanization whereas the micro silica particles decelerated the curing process. Both micro and nano silica increased the crosslink density as evidenced by swelling test. However, this value has been more improved in CSM/nano silica composites. The physico‐mechanical properties of CSM/nano silica are superior compared to CSM/micro silica. Nano silica provided reinforcing efficiency which is not only because of higher specific surface area but also because of various interactions and especially physical interactions which are discussed in the text. Nano silica particles also improved the thermal properties more efficiently. Incorporation of 15 phr (part per hundred) nano and 5 phr micro silica to polymer improved the initial decomposition temperature for about 51°C and 16°C, respectively, using a TGA. The combination of micro and nano silica, showed that by coupling nano and micro fillers, the loading of fillers can be minimized. In other words, the hybrid samples with a lower filler loading behave as efficient as their separate counterpart with higher loading. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42668.  相似文献   
8.

In this study, the AdaBoost, MultiBoost and RealAdaBoost methods were combined with the Quadratic Discriminant Analysis method to develop three new GIS-based Machine Learning ensemble models, i.e., ABQDA, MBQDA, and RABQDA for groundwater potential mapping in the Dak Nong Province, Vietnam. In total, 227 groundwater wells and 12 conditioning factors (infiltration, rainfall, river density, topographic wetness index, sediment transport index, stream power index, elevation, aspect, curvature, slope, soil, and land use) were used for this study. Performance of the models was evaluated using the Area Under the Receiver Operating Characteristics Curve AUC (AUC) and several other performance metrics. The results showed that the ABQDA model that achieved AUC?=?0.741 was superior to the other models in producing an accurate map of groundwater potential for the Dak Nong Province. The models and potential maps produced here can help policymakers and water resources managers to preserve an optimal exploit from these vital resources.

  相似文献   
9.
The present work aims to enhance thermal stability and flame retardancy of the epoxy/glass composites containing carbon nanotubes (CNTs). To achieve this purpose ammonium polyphosphate (APP) as a micro filler and montmorillonite (MMT) as nanofiller have been used. Since good dispersion is necessary to achieve thermal and flame resistivity in nanocomposites, it was found that combination of ultrasonication and high shear flow can result in a good dispersion of nanoparticles in polymer matrix. Thus, all samples were prepared according to this method. In order to study thermal resistance and flame retardancy of the samples, thermal gravimetric analysis (TGA) and limiting oxygen index (LOI) have been employed, respectively. TGA results showed that combination of 0.5 wt% CNTs with either 5 wt% MMT or 15 wt% APP can increase the initial thermal decomposition temperature up to 62 °C for the former polymer composite and 47 °C for the latter one. Overall stabilization effect (OSE) and integral procedure decomposition temperature (IPDT) parameters have also been calculated from TGA data. These results showed that the sample containing a combination of APP and CNT has the highest value of OSE. Moreover, IPDT of this sample has increased about 9 % compared with the neat epoxy. LOI of the samples showed that the addition of MMT and CNTs together could increase LOI about 8 % and introduction of APP to these samples increased LOI about 10 %, as well.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号