首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   5篇
电工技术   1篇
化学工业   24篇
金属工艺   5篇
机械仪表   2篇
能源动力   23篇
轻工业   15篇
无线电   8篇
一般工业技术   24篇
冶金工业   5篇
原子能技术   7篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   9篇
  2020年   6篇
  2019年   9篇
  2018年   9篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   1篇
  2011年   10篇
  2010年   7篇
  2009年   11篇
  2008年   3篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   2篇
  1997年   1篇
  1988年   1篇
  1987年   3篇
排序方式: 共有114条查询结果,搜索用时 738 毫秒
1.
Adipose-derived mesenchymal stromal cells (Ad-MSCs) are a promising tool for articular cartilage repair and regeneration. However, the terminal hypertrophic differentiation of Ad-MSC-derived cartilage is a critical barrier during hyaline cartilage regeneration. In this study, we investigated the role of matrilin-3 in preventing Ad-MSC-derived chondrocyte hypertrophy in vitro and in an osteoarthritis (OA) destabilization of the medial meniscus (DMM) model. Methacrylated hyaluron (MAHA) (1%) was used to encapsulate and make scaffolds containing Ad-MSCs and matrilin-3. Subsequently, the encapsulated cells in the scaffolds were differentiated in chondrogenic medium (TGF-β, 1–14 days) and thyroid hormone hypertrophic medium (T3, 15–28 days). The presence of matrilin-3 with Ad-MSCs in the MAHA scaffold significantly increased the chondrogenic marker and decreased the hypertrophy marker mRNA and protein expression. Furthermore, matrilin-3 significantly modified the expression of TGF-β2, BMP-2, and BMP-4. Next, we prepared the OA model and transplanted Ad-MSCs primed with matrilin-3, either as a single-cell suspension or in spheroid form. Safranin-O staining and the OA score suggested that the regenerated cartilage morphology in the matrilin-3-primed Ad-MSC spheroids was similar to the positive control. Furthermore, matrilin-3-primed Ad-MSC spheroids prevented subchondral bone sclerosis in the mouse model. Here, we show that matrilin-3 plays a major role in modulating Ad-MSCs’ therapeutic effect on cartilage regeneration and hypertrophy suppression.  相似文献   
2.
3.
Iron oxide nanoparticles have great importance in future biomedical applications because of their intrinsic properties, such as low toxicity, colloidal stability, and surface engineering capability. So, blood containing iron oxide nanoparticles are used in biomedical sciences as contrast agents following intravenous administration. The current problem deals with an analysis of the melting heat transfer of blood consisting iron nanoparticles in the existence of free convection. The principal equations of the problem are extremely nonlinear partial differential equations which transmute into a set of nonlinear ordinary differential equations by applying proper similarity transformations. The acquired similarity equalities are then solved numerically by Runge‐Kutta Felhsberg 45th‐order method. The results acquired are on the same level with past available results. Some noteworthy findings of the study are: the rate of heat transfer increases as the Casson parameter increases and also found that the temperature of the blood can be controlled by increasing or decreasing the Prandtl number. Hence, we conclude that flow and heat transfer of blood have significant clinical importance during the stages where the blood flow needs to be checked (surgery) and the heat transfer rate must be controlled (therapy).  相似文献   
4.
Plasma spraying is used to produce wear resistant coatings. However, the primary problem is the poor bonding strength between the coating and the substrate. The secondary problem is the high porosity in the as-sprayed coatings, which reduces the wear resistance of coating. In order to overcome these problems, the sealing of plasma-sprayed coating by electrodeposition has been used. The sealing of plasma-sprayed coatings alters the wear mechanism and wear resistance. The wear mechanism and wear resistance largely depends on the applied load, sliding speed and sliding distance. Hence, an effort has been made in the present work to study the effects of these parameters on wear volume loss using response surface methodology (RSM)-based mathematical models. The experiments were conducted as per Central Composite Design (CCD). It reveals that the applied load was the most predominant factor affecting the wear volume loss of the coating material. The sliding speed is the next most important parameter influencing the wear volume loss. The wear volume loss of the sealed plasma-sprayed molybdenum coating occurs mainly due to the formation of grooves, surface tribo films, fracture of splats and delamination of the coating.  相似文献   
5.
Results of the studies carried out on the electrical behaviour of silver island films deposited on the blends of polystyrene (PS) and poly (4-vinylpyridine) (P4VP) are presented here. The substrates were held at 457 K, much above the glass transition temperature of both the polymers to ensure sufficient polymer fluidity during deposition, to obtain a sub-surface particulate film. A constant deposition rate of 0.4 nm/s was used throughout the study. Films on softened PS gives rise to a very high room temperature resistance approaching that of the substrate resistance due to the formation of a highly agglomerated structure. On the other hand, films on softened P4VP gives rise to a room temperature resistance in the range of a few tens to a few hundred MΩ/, which is desirable for device applications. The blends of PS and P4VP show room temperature resistances in the desirable range even at a PS/P4VP ratio of 75:25. The films show an increase in resistance when they are exposed to atmosphere. This is attributed to the oxidation of silver islands. The film resistances in the desired range could be obtained even after exposure to atmosphere up to a PS concentration of 50%.  相似文献   
6.
The integral diaphragm pressure transducers machined out of precipitation hardened martensite stainless steel (APX4) are widely used for propellant pressure measurements in space applications. These transducers are expected to exhibit dimensional stability and linearity for their entire useful life. These vital factors are very critical for the reliable performance and dependability of the pressure transducers. However, these transducers invariably develop internal stresses during various stages of machining. These stresses have an adverse effect on the performance of the transducers causing deviation from linearity. In order to eliminate these possibilities, it was planned to cryotreat the machined transducers to improve both the long-term linearity and dimensional stability. To study these effects, an experimental cryotreatment unit was designed and developed based on the concept of indirect cooling using the concept of cold nitrogen gas forced closed loop convection currents. The system has the capability of cryotreating large number of samples for varied rates of cooling, soaking and warm-up. After obtaining the initial levels of residual stress and retained austenite using X-ray diffraction techniques, the pressure transducers were cryotreated at 98 K for 36 h. Immediately after cryotreatment, the transducers were tempered at 510 °C for 3 h in vacuum furnace. Results after cryo treatment clearly indicated significant reduction in residual stress levels and conversion of retained austenite to martensite. These changes have brought in improvements in long term zero drift and dimensional stability. The cryotreated pressure transducers have been incorporated for actual space applications.  相似文献   
7.
Stable Ag nanoparticles have been synthesized by irradiating an aqueous solution of AgNO3 and Poly-vinyl alcohol (PVA) with 8 MeV electrons from a Microtron. The rate of formation of nanoparticles could be controlled by changing either the irradiation dosage or the relative concentration of the precursors. The size, shape, and the rate of formation of the nanoparticles depend on the final dosage, as well as the weight ratio of AgNO3 and PVA. The formation of Ag nanoparticles and their size were established through UV–Vis spectroscopy and Transmission electron microscopy (TEM) analysis, respectively. Increasing the irradiation dosage seem to favour the formation of polygonal nanostructures. Differential scanning calorimetry (DSC) measurements show that there exists a strong interaction between the PVA matrix and the Ag nanoparticles.  相似文献   
8.
Results of investigations on the electrical properties of n+-p-p+ silicon (Si) photo-detectors irradiated with 8 MeV electrons are presented. The photo-detectors were irradiated with electrons of doses up to 100 kGy. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics under dark conditions were measured as a function of dose. A significant change in the diffusion component of the saturation current is observed after irradiation, while the generation-recombination component of the saturation current remains almost unchanged. The series resistance is found to increase with increasing dose while the shunt resistance and carrier concentration decrease with dose. Optoelectronic properties, namely short circuit current Isc, open circuit voltage Voc under air mass zero illumination and spectral response, were measured at various doses. From the spectral responses of the devices, the minority carrier diffusion length was estimated.  相似文献   
9.
Three new donor–acceptor type poly{2,2l‐(3,4‐ dialkoxythiophene‐2,5‐diyl)bis[5‐(2‐thienyl)‐1,3,4‐oxadiazole]}s ( P1, P2, and P3 ) were synthesized starting from thiodiglycolic acid and diethyl oxalate through multistep reactions. The polymerization was carried out using chemical polymerization technique. The optical and charge‐transporting properties of the polymers were investigated by UV‐visible, fluorescence emission spectroscopic and cyclic voltammetric studies. The polymers showed bluish‐green fluorescence in solutions. The electrochemical band gaps were determined to be 2.03, 2.09, and 2.17 eV for P1 , P2, and P3, respectively. The nonlinear optical properties of new polymers were investigated at 532 nm using single beam Z‐scan and degenerate four‐wave mixing (DFWM) techniques with nanosecond laser pulses. The polymers exhibited strong optical limiting behavior due to “effective” three‐photon absorption. Values of the effective three‐photon absorption ( 3PA ) coefficients, third‐order nonlinear susceptibilities (χ(3)), and figures (F) of merit were calculated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
10.
This study deals with the quartic autocatalysis of homogeneous–heterogeneous chemical reaction that occurs in the bioconvective flow of micropolar nanofluid between two horizontally parallel plates. The quartic autocatalysis is found to be more effective than cubic autocatalysis since the concentration of the homogeneous species is substantially high. The upper plate is assumed to be in motion and the lower plate is kept stationary. Such a flow of micropolar fluid finds application in the pharmaceutical industry, microbial enhanced oil recovery, hydrodynamical machines, chemical processing, and so forth. The governing equations for this flow are in the form of the partial differential equation and their corresponding similarity transformation is obtained through Lie group analysis. The governing equations are further transformed to coupled nonlinear differential equations that are linearized through the Successive linearization method and are solved using the Chebyshev Collocation method. The effects of various parameters, such as micropolar coupling parameter, spin gradient parameter, reaction rates, and so forth, are analyzed. It is observed that the fluid flows with a greater velocity away from the channel walls, whereas near the channel walls the velocity decreases with an increase in the coupling parameter. Furthermore, the spin parameter increases the spin gradient viscosity that reduces the microrotation of particles that further decreases the microrotation profile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号