首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学工业   2篇
建筑科学   2篇
一般工业技术   3篇
自动化技术   1篇
  2020年   2篇
  2019年   3篇
  2014年   2篇
  2012年   1篇
排序方式: 共有8条查询结果,搜索用时 18 毫秒
1
1.
Khater  G. A.  Nabawy  Bassem S.  Kang  Junfeng  Yue  Yunlong  Mahmoud  M. A. 《SILICON》2020,12(12):2921-2940
Silicon - A total of six glass batches (WB100-WB50) based primarily on weathered basalt with successive addition of bypass cement dust (with the weight content 0–50%) were melted at...  相似文献   
2.
Bulletin of Engineering Geology and the Environment - In the present study, the Jurassic Bir El-Maghara and Masajid Formations in North Sinai are subjected to a detailed microfacies analysis to...  相似文献   
3.
Khater  G. A.  Nabawy  B. S.  Kang  J.  Mahmoud  M. A. 《SILICON》2019,11(2):579-592
Silicon - Sinai basaltic rocks were melted as glass and casted into disc- and rode-shapes and subjected to thermal treatment to induce crystallization as a glass-ceramic. The dominant crystalline...  相似文献   
4.

This article presents a nonlinear displacement based finite elements model to study and analyze the nonlinear dynamic response of flexible double wishbone structural vehicle suspension system considering damping effect which was not previously discussed elsewhere. Due to large deflection and moderate rotation encountered during passing over road bumps, the kinematic nonlinearity is included through von Kármán strain component. Elastic undamped as well as viscous and viscoelastic damping mechanism are considered and compared. Considering the viscoelastic damping mechanism, the viscoelastic damping mechanism is modeled based on the integral constitutive form, which is recast into an incremental form suitable for finite element implementation. Additionally, the revolute joint element is adopted to incorporate the joint flexibility in the double wishbone system. The plane frame element is adopted to model the suspension links by using Timoshenko beam theory. The developed nonlinear finite element equations of motion are solved through the incremental iterative Newmark technique. The developed procedure is verified by comparing the obtained results with analytical solution and excellent agreement is observed. The applicability of the developed procedure is demonstrated by conducting parametric studies to show the effects of the road irregularities profiles, the vehicle speed, and the material damping coefficients on the nonlinear vibrations response of the double wishbone suspension systems. The obtained results are supportive in the design and manufacturing processes of these structural systems.

  相似文献   
5.
This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping.  相似文献   
6.
7.
An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length.  相似文献   
8.
This study was undertaken to investigate the effects of chemical composition and mold temperature (MT) on the hot-tearing susceptibility (HTS) of an experimental Al–2% Cu–1% Si alloy using a constrained rod casting mold. The HTS results were then compared with 206 (Al–5 wt% Cu) alloys containing the same additions. In general, the Al–2% Cu–1% Si based alloys exhibited higher resistance to hot-tearing than did the 206-based alloys. It was found that an elevated MT is beneficial in reducing the HTS of the Al–2% Cu–1% Si and 206 alloys in that the HTS value decreased from over 21 to less than 5, as the MT was increased from 250 to 450 °C. Increasing the Si content reduced the HTS of the Al–2% Cu–1% Si alloy considerably; this reduction may be attributed to an increase in the volume fraction of eutectic in the structure. The addition of Sr caused deterioration in the hot-tearing resistance of the base alloy due to the formation of Sr-oxides and an extension of the freezing range of the alloy. The refinement of the grain structure obtained with the Zr–Ti–B addition decreased the severity of hot-tearing as a result of an increase in the number of intergranular liquid films per unit volume and a delay in reaching the coherency point. It was also observed that α-Fe intermetallic particles may impede the propagation of hot-tearing cracks. The Al–2% Cu–1% Si alloy with 1 wt% Si addition was judged to be the best composition in view of its low HTS.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号