首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学工业   13篇
无线电   1篇
一般工业技术   3篇
  2023年   2篇
  2021年   8篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
Due to the systematic increase in the production of nanomaterials (NMs) and their applications in many areas of life, issues associated with their toxicity are inevitable. In particular, the performance of heterogeneous NMs, such as nanocomposites (NCs), is unpredictable as they may inherit the properties of their individual components. Therefore, the purpose of this work was to assess the biological activity of newly synthesized Cu/TiO2-NC and the parent nanoparticle substrates Cu-NPs and TiO2-NPs on the bacterial viability, antioxidant potential and fatty acid composition of the reference Escherichia coli and Bacillus subtilis strains. Based on the toxicological parameters, it was found that B. subtilis was more sensitive to NMs than E. coli. Furthermore, Cu/TiO2-NC and Cu-NPs had an opposite effect on both strains, while TiO2-NPs had a comparable mode of action. Simultaneously, the tested strains exhibited varied responses of the antioxidant enzymes after exposure to the NMs, with Cu-NPs having the strongest impact on their activity. The most considerable alternations in the fatty acid profiles were found after the bacteria were exposed to Cu/TiO2-NC and Cu-NPs. Microscopic images indicated distinct interactions of the NMs with the bacterial outer layers, especially in regard to B. subtilis. Cu/TiO2-NC generally proved to have less distinctive antimicrobial properties on B. subtilis than E. coli compared to its parent components. Presumably, the biocidal effects of the tested NMs can be attributed to the induction of oxidative stress, the release of metal ions and specific electrochemical interactions with the bacterial cells.  相似文献   
2.
The development of rapid, simple, and accurate bioassays for the detection of nucleic acids has received increasing demand in recent years. Here, localized surface plasmon resonance (LSPR) spectroscopy for the detection of an antimicrobial resistance gene, sulfhydryl variable β-lactamase (blaSHV), which confers resistance against a broad spectrum of β-lactam antibiotics is used. By performing limit of detection experiments, a 23 nucleotide (nt) long deoxyribonucleic acid (DNA) sequence down to 25 nm was detected, whereby the signal intensity is inversely correlated with sequence length (23, 43, 63, and 100 nt). In addition to endpoint measurements of hybridization events, the setup also allowed to monitor the hybridization events in real-time, and consequently enabled to extract kinetic parameters of the studied binding reaction. Performing LSPR measurements using single nucleotide polymorphism (SNP) variants of blaSHV revealed that these sequences can be distinguished from the fully complementary sequence. The possibility to distinguish such sequences is of utmost importance in clinical environments, as it allows to identify mutations essential for enzyme function and thus, is crucial for the correct treatment with antibiotics. Taken together, this system provides a robust, label-free, and cost-efficient analytical tool for the detection of nucleic acids and will enable the surveillance of antimicrobial resistance determinants.  相似文献   
3.
Growing resistance to antibiotics, as well as newly emerging pathogens, stimulate the investigation of antimicrobial peptides (AMPs) as therapeutic agents. Here, we report a new library design concept based on a stochastic distribution of natural AMP amino acid sequences onto half‐length synthetic peptides. For these compounds, a non‐natural motif of alternating D ‐ and L ‐backbone stereochemistry of the peptide chain predisposed for β‐helix formation was explored. Synthetic D ‐/L ‐peptides with permuted half‐length sequences were delineated from a full‐length starter sequence and covalently recombined to create two‐dimensional compound arrays for antibacterial screening. Using the natural AMP magainin as a seed sequence, we identified and iteratively optimized hit compounds showing high antimicrobial activity against Gram‐positive and Gram‐negative bacteria with low hemolytic activity. Cryo‐electron microscopy characterized the membrane‐associated mechanism of action of the new D ‐/L ‐peptide antibiotics.  相似文献   
4.
Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant’s defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex’s general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.  相似文献   
5.
Sodium aluminophosphate glasses were evaluated for their bone repair ability. The glasses belonging to the system 45Na2O–xAl2O3‐(55‐x)P2O5, with = (3, 5, 7, 10 mol%) were prepared by a melt‐quenching method. We assessed the effect of Al2O3 content on the properties of Na2O–Al2O3–P2O5 (NAP) glasses, which were characterized by density measurements, DSC analyses, solubility, bioactivity in simulated body fluid and cytocompatibility with MG‐63 cells. To the best of our knowledge, this is the first investigation of calcium‐free Na2O–Al2O3–P2O5 system glasses as bioactive materials for bone tissue engineering.  相似文献   
6.
BacSp222 is a multifunctional peptide produced by Staphylococcus pseudintermedius 222. This 50-amino acid long peptide belongs to subclass IId of bacteriocins and forms a four-helix bundle molecule. In addition to bactericidal functions, BacSp222 possesses also features of a virulence factor, manifested in immunomodulatory and cytotoxic activities toward eukaryotic cells. In the present study, we demonstrate that BacSp222 is produced in several post-translationally modified forms, succinylated at the ε-amino group of lysine residues. Such modifications have not been previously described for any bacteriocins. NMR and circular dichroism spectroscopy studies have shown that the modifications do not alter the spatial structure of the peptide. At the same time, succinylation significantly diminishes its bactericidal and cytotoxic potential. We demonstrate that the modification of the bacteriocin is an effect of non-enzymatic reaction with a highly reactive intracellular metabolite, i.e., succinyl-coenzyme A. The production of succinylated forms of the bacteriocin depends on environmental factors and on the access of bacteria to nutrients. Our study indicates that the production of succinylated forms of bacteriocin occurs in response to the changing environment, protects producer cells against the autotoxicity of the excreted peptide, and limits the pathogenicity of the strain.  相似文献   
7.
Nanoemulsion systems receive a significant amount of interest nowadays due to their promising potential in biomedicine and food technology. Using a two-step process, we produced a series of nanoemulsion systems with different concentrations of hemp seed oil (HSO) stabilized with Aesculus hippocastanum L. extract (AHE). Water and commercially-available low-concentrated hyaluronic acid (HA) were used as the liquid phase. Stability tests, including an emulsifying index (EI), and droplet size distribution tests performed by dynamic light scattering (DLS) proved the beneficial impact of AHE on the emulsion’s stability. After 7 days of storage, the EI for the water-based system was found to be around 100%, unlike the HA systems. The highest stability was achieved by an emulsion containing 5% HSO and 2 g/L AHE in water, as well as the HA solution. In order to obtain the detailed characteristics of the emulsions, UV-Vis and FTIR spectra were recorded, and the viscosity of the samples was determined. Finally, a visible microscopic analysis was used for the homogeneity evaluation of the samples, and was compared with the DLS results of the water system emulsion, which showed a desirable stability. The presented results demonstrate the possible use of oil emulsions based on a plant extract rich in saponins, such as AHE. Furthermore, it was found that the anti-inflammatory properties of AHE provide opportunities for the development of new emulsion formulations with health benefits.  相似文献   
8.
The antimicrobial activity of nanoparticles (NPs) is a desirable feature of various products but can become problematic when NPs are released into different ecosystems, potentially endangering living microorganisms. Although there is an abundance of advanced studies on the toxicity and biological activity of NPs on microorganisms, the information regarding their detailed interactions with microbial cells and the induction of oxidative stress remains incomplete. Therefore, this work aimed to develop accurate oxidation stress profiles of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis strains treated with commercial Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs. The methodology used included the following determinations: toxicological parameters, reactive oxygen species (ROS), antioxidant enzymes and dehydrogenases, reduced glutathione, oxidatively modified proteins and lipid peroxidation. The toxicological studies revealed that E. coli was most sensitive to NPs than B. cereus and S. epidermidis. Moreover, NPs induced the generation of specific ROS in bacterial cells, causing an increase in their concentration, which further resulted in alterations in the activity of the antioxidant defence system and protein oxidation. Significant changes in dehydrogenases activity and elevated lipid peroxidation indicated a negative effect of NPs on bacterial outer layers and respiratory activity. In general, NPs were characterised by very specific nano-bio effects, depending on their physicochemical properties and the species of microorganism.  相似文献   
9.
Biofilm formation, also known as microfouling, on indwelling medical devices such as catheters or prosthetic joints causes difficult to treat and recurrent infections. It is also the initial step for biocorrosion of surfaces in aquatic environment. An efficient prevention of microfouling is preferable but the development of antibiofilm surfaces is enormously challenging. Therefore, soda-lime, aluminosilicate, and three borosilicate glasses with different TiO2 and ZnO compositions were investigated on their feasibility to prevent biofilm formation by standardized in vitro biofilm assays using different pathogenic bacteria. Furthermore, the biocompatibility of these glasses was evaluated using eukaryotic cell lines end erythrocytes. Only two borosilicate glasses, containing TiO2 and ZnO, showed an increased antibiofilm performance inhibiting biofilm adhesion and formation. The biofilm thickness and area were significantly reduced by over 90?% and characterized by diffuse structures. All tested glass types showed neither cytotoxicity nor hemotoxicity. Therefore, the antibiofilm borosilicate-thin glasses are qualified for surface coatings where biofilms are not desirable such as on medical devices.  相似文献   
10.
Recent studies indicate that Acanthamoeba spp. may play a significant role in kidney dysfunction. The aim of the study was to examine the levels of kidney injury molecule 1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and monocyte chemotactic protein 1 (MCP-1), as well as an activity of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9, respectively) in the kidneys of immunocompetent and immunosuppressed mice infected with Acanthamoeba spp. The levels of KIM-1, NGAL, and MCP-1 were analyzed by enzyme-linked immunosorbent assay (ELISA), and the activity of MMPs was determined by gelatin zymography. The elevated KIM-1 level was found in the kidneys of immunocompetent mice at the beginning of Acanthamoeba spp. infection. In the immunosuppressed mice, the KIM-1 level was statistically different. The statistically decreased NGAL level was found in the kidneys of immunocompetent mice compared to the uninfected mice. In the immunocompromised mice, we found statistically significant differences in MCP-1 levels between the uninfected and infected groups. There was an increase in the expression of both MMP-2 and MMP-9 in the kidneys of immunocompetent and immunosuppressed mice infected with Acanthamoeba spp. compared to the uninfected mice. The results indicate that KIM-1, NGAL, MCP-1, MMP-2, MMP-9, and MMP-9/NGAL might be promising biomarkers of renal acanthamoebiasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号