首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
化学工业   5篇
金属工艺   2篇
轻工业   2篇
无线电   14篇
一般工业技术   1篇
自动化技术   9篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1984年   1篇
  1983年   3篇
排序方式: 共有33条查询结果,搜索用时 168 毫秒
1.
The guest editors talk a little about haptic interfaces and give an overview of the articles for this special issue.  相似文献   
2.
The advent of neodymium-iron-boron materials having excellent magnetic properties and potential economic advantages has initiated a new era in permanent magnet technology. One method of making these magnets is by the rapid solidification process. It is typically carried out by melt spinning, which produces a highly stable, dmagnetically hard microstructure powder, directly from the melt. This can be used for bonded magnet applications. Alternatively, this powder can be hot pressed to produce fully dense isotropic magnets with energy products up to 15 MGOe. Anisotropic magnets with energy products ranging up to 50 MGOe can be produced by thermomechanical orientation or hot deformation process. Current processing and properties of Magnequench (General Motors) materials are reviewed, das well as the applications and advances of these materials. The advances include high-temperature bonded magnet and high-energy product anisotropic bonded and fully dense magnets.  相似文献   
3.
4.
Wavelet-based image coding using nonlinear interpolative vectorquantization   总被引:1,自引:0,他引:1  
We propose a reduced complexity wavelet-based image coding technique. Here, 64-D (for three stages of decomposition) vectors are formed by combining appropriate coefficients from the wavelet subimages, 16-D feature vectors are then extracted from the 64-D vectors on which vector quantization (VQ) is performed. At the decoder, 64-D vectors are reconstructed using a nonlinear interpolative technique. The proposed technique has a reduced complexity and has the potential to provide a superior coding performance when the codebook is generated using the training vectors drawn from similar images.  相似文献   
5.
Image/video compression is widely used in various applications with the advent of the Joint Photographic Expert Group (JPEG), Motion Picture Expert Group (MPEG), and H.261 standards. Hence, most visual data are stored in the compressed format. Spatial scalable encoding of visual data has several applications, including browsing visual databases, querying multimedia databases, interactive multimedia communications, etc. We propose two novel techniques, namely, format compatible (FC) discrete cosine transform (DCT) and format modified (FM) DCT to implement image/video spatial scalability directly in the DCT compressed domain. The FC-DCT technique can be used to manipulate the standard bit streams, such as JPEG, MPEG, etc., while the FM-DCT technique can be employed in a variety of applications which require fast processing. In contrast to the traditional spatial-domain techniques, the compressed-domain techniques remove the unnecessary decompression and recompression procedures, thus, they have the advantages of reduced computational complexity and storage requirements. Simulation results demonstrate that the proposed DCT-domain techniques can achieve a comparable performance at a much lower computational complexity compared to the spatial-domain techniques  相似文献   
6.
Non-linear polynomials for several human isometric strengths have been developed with the help of a modified heuristic technique, Group Method of Data Handling (GMDH). These polynomials use different body size parameters (anthropometric variables) in predicting isometric strengths. The modified GMDH technique was very helpful in identifying strength polynomials even though body size measurements, historically, have been found to be poor predictors of isometric strenghts.  相似文献   
7.
8.
9.
In this work, we propose the synthesis of urea-pyridyl (UPy) ligand functionalized mesoporous silica hybrid material as novel and effective drug delivery system for loading/release of both hydrophobic and hydrophilic drugs. For the synthesis of UPy ligand functionalized mesoporous silica hybrid material, the combination of sol–gel co-condensation technique and post silica surface modification method were adapted. The prepared UPy ligand functionalized mesoporous silica hybrid (UPy-MSH) material was characterized by X-ray diffraction, Fourier-transform infrared, N2 adsorption–desorption analysis. The material morphology and mesopore channels were observed by scanning and transmission electron microscopic analyses. The content of modified organic ligand functionalities present in the UPy-MSH material surface was determined by thermogravimetric analysis. The hydrophilic anticancer drug, 5-Fluorouracil and the hydrophobic anti-inflammatory drug, Ibuprofen was used as a model drugs to determine the loading and pH-responsive release efficiency of the synthesized UPy-MSH material under different pH (pH 7.4 and 5.0) conditions, respectively. In addition, the biocompatibility of the UPy-MSH material was evaluated on MDA-MB-231 cells. The experimental results depicted that the synthesized UPy-MSH material is biocompatible and has high drug loading capacity, selective and controlled release of specific drug with respect to the pH condition.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号