首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
化学工业   6篇
一般工业技术   2篇
  2019年   1篇
  2015年   2篇
  2008年   1篇
  2007年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
A molecularly trichloroacetic acid (TCAA) imprinted non‐crosslinked polypyrole (TCAA‐MIPpy) has been successfully prepared and evaluated in its properties for both piezoelectric quartz crystal microbalance (QCM) and electrochemical means of detection, and application of such sensors for determination of haloacetic acid concentrations in water. Haloacetic acid selectivity was demonstrated in gravimetric or in electrochemical sensors via either cyclic voltammetric or inter‐digitated conductometric (IDC) analyses studies upon comparison with nonimprinted polypyrrole and TCAA‐imprinted polypyrrole. The measurement results with all these systems revealed that the prepared molecularly imprinted polymer can recognize TCAA well from structurally similar compounds. The TCAA‐MIPpy incorporated with only the IDC transduction system produced the specific signal for TCAA detection in aqueous environment, which is useful for the quantifying TCAA disinfection by‐product in water. The analytical application for determination of TCAA in real‐life samples was readily achieved with the incorporation of TCAA‐MIPpy in the IDC analysis system, the results revealing the high sensitivity and selectivity of the method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
2.
In this study, we report the development of adsorptive extraction materials by surface protein-imprinted polymers (MIPs) over silica gel for selective recognition/separation of human serum albumin (HSA) from urine. The HSA-imprinted polymers prepared on silica particle had at interface between the silica gel and different MIPs greatly produced enrichment for the binding of protein from the urine. The solid-phase extraction of the optimized polymer layer was prepared by copolymerization of methacrylic acid (MAA), acrylamide (AAm), and dimethylaminoethylmethacrylate (DMAEMA) and a crosslinker methylenebisacrylamide (MBA) at the mole ratio of 1:158:88 (T:M:C) and showed moderate affinity (<104 order M−1) toward target protein HSA and selectivity. Four analogues, egg white albumin (EWA), bovine serum albumin (BSA), lysozyme (Lyz), and creatinine (Cre) were selected to study the binding efficiency of MIPs in single and binary protein solutions. We studied the influence on recognition ability for HSA and found that prepolymer mixture and matrix flexibility of the optimized thin polymer layer (35 ± 10 nm) on the submicrosilica particles. The high-binding affinity (QMIP, 86.7 mg g−1) and fast kinetics (180 min) were observed for this synthesized HSA-MIP when compared with other reported HSA-MIPs in surface imprinting (5.9 and 11.3 mg g−1) and epitope surface imprinting (46.6 mg g−1) methods. We demonstrated the application in real and synthetic urine samples that the approach allowed the efficient adsorption of HSA in real urine (129.48 mg g−1) is almost double to the binding of HSA in synthetic urine (67.84 mg g−1). Apart from this, only minor interference of Cre (2.74 mg g−1) was observed, eventhough Cre is the final metabolite in urine. These adsorptive submicrosilica materials have potential in the pharmaceutical industry and clinical analysis applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46894.  相似文献   
3.
Stereoselective release behaviors of imprinted bead matrices   总被引:2,自引:0,他引:2  
In this work, the stereoselective release behaviors of “low”-swelling molecularly imprinted polymer (MIP) bead matrices in pressed-coat tablet type were studied. Either R-propranolol selective MIP or S-propranolol selective MIP was combined with excipients and racemic propranolol and fabricated into the matrix. Subsequently, the release of different propranolol enantiomers from the matrices was examined. Also, the microscopic structure of the hydrated “low”-swelling MIP matrix was determined using a cryogenic scanning electron microscope in order to compare with that of the hydrated “high”-swelling MIP matrix. In vitro release profiles of the “low”-swelling matrices showed a difference in the release of enantiomers, in that the non-template isomer was released faster than the template isomer. However, in the last phase of dissolution this difference reduced and later reversed, resulting at last in the type of specificity being similar to that obtained previously with “high”-swelling MIP matrices.

n summary, MIP beads can be fashioned into matrices and incorporated into different formulations to regulate the resultant stereoselectivity. From the behaviors of stereoselective release observed in MIP matrices, we can conclude that the enantioselective-controlled delivery mechanism of MIPs via formulations depends on the relative affinity of the enantiomer for the template sites, as well as the nature of the polymer, such as hydrophobicity and swellability.  相似文献   
4.
We present details of the chemical surface properties of the molecularly imprinted polymer (MIP) on quartz crystal microbalance (QCM) for the tracking of the chiral recognition of racemic thalidomide and its (R)‐enantiomer. We investigate the assembly and specific patterns of enantiomer and racemate of thalidomide on the poly(urethane) coating consisted of the synthetic‐estrogen bisphenol A (BPA) on a QCM electrode by infrared spectroscopy and atomic force microscopy (AFM), which confirmed the surface properties of these materials. The BPA present on the surface of the coating layer revealed a positive frequency response for the racemic thalidomide that eventually appeared. This involved a negative shift of 80 Hz for a 200 µg mL?1 racemic thalidomide, and in all cases, a negative shift of 200 Hz for a 100 µg mL?1 (R)‐thalidomide. The affinity constants (Ka) for the racemate adsorbed onto the polymer layer imprinted with (R)‐thalidomide were lower than those for the (R)‐thalidomide. Also, the binding energy involved a different binding process of the chiral forms and indicated that the two enantiomers had a twofold difference in their binding energies. Thus, the advantage of the use of BPA is proven that will function as hydrogen‐bond donors in the enantioselective recognition site of the MIP. The data of functional analysis demonstrated that the biomimetic detection using molecular imprinting turn out to a study of the pharmaceutical effects of a pharmaceutically chiral compound on natural receptor functions. This approach is highly useful that highlight an enhanced understanding of the mechanism of stereochemistry required for biological controls. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42309.  相似文献   
5.
The target of this study was to synthesize the molecularly imprinted polymers (MIPs) of L ‐phenylalanine as the solid phases for characterization of molecular adsorption by molecularly imprinted solid phase extraction (MISPE). These MIPs, in microscale, were synthesized using thermal (40°C)‐compared with thermal (65°C)‐initiated polymerization process. Itaconic acid was chosen as the functional monomers, and either ethylene glycol dimethacrylate or trimethylolpropane trimethacrylate (TRIM) was used as the cross linker and was compared together. The influences of several parameters on the properties of the MIPs were investigated, especially physical robustness from the percentage yields and molecular adsorption from the percentage recovery by MISPE. The best yields were obtained from polymers made using TRIM and thermal (65°C)‐initiated polymerization. However, there were no significant differences in molecular adsorption. It was concluded that these parameters can be considered to synthesize MIPs for chiral separation in advance steps such as other related chromatographic techniques. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2325–2330, 2007  相似文献   
6.
The purpose of this work was to examine the in vitro enantioselective dissolution of salbutamol from matrix tablets containing various chiral excipients, such as γ-cyclodextrin (γ-CD), heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), sulfobutyl-β-cyclodextrin (SBE-β-CD), hydroxypropylmethylcellulose (HPMC), and egg albumin. In this study, two types of tablets were prepared; the coated tablet contained the complex of racemic salbutamol and cyclodextrin (γ-CD, DM-β-CD, and SBE-β-CD), and the uncoated tablet was composed of the drug with either HPMC or egg albumin. Subsequently, these formulations were evaluated for enantioselective release. The results revealed that the formulations containing either SBE-β-CD, HPMC, or egg albumin had no enantioselective release, while the formulation with DM-β-CD gave slightly different release of the two enantiomers at the end of the dissolution profile. The formulation containing γ-CD provided significant stereoselectivity throughout the dissolution profile. The release of the eutomer R-salbutamol was higher than that of the distomer S-salbutamol from the γ-CD tablet. In addition, the enantioselective interaction for the γ-CD inclusion complex was investigated by 1H-NMR (nuclear magnetic resonance) spectroscopy and gave evidence to support the enantioselectivity obtained on dissolution.  相似文献   
7.
A molecularly imprinted polymer (MIP) with dual dopamine/serotonin-like binding sites (DS-MIP) was synthesized for use as a receptor model of study the drug-interaction of biological mixed receptors at a molecular level. The polymer material was produced using methacrylic acid (MAA) and acrylamide (ACM) as functional monomers, N,N′-methylene bisacrylamide (MBAA) as cross-linker, methanol/water mixture (4:1, v/v) as porogen and a mixture of dopamine (D) and serotonin (S) as templates. The prepared DS-MIP exhibited the greatest rebinding of the template(s) in aqueous methanol solution with decreased recognition in acetonitrile, water and methanol solvent. The binding affinity and binding capacity of DS-MIP with S were found to be higher than those of DS-MIP with D. The selectivity profiles of DS-MIP suggest that the D binding site of DS-MIP has sufficient integrity to discriminate between species of non-optimal functional group orientation, whilst the S binding site of DS-MIP is less selective toward species having structural features and functional group orientations different from S. The ligand binding activities of a series of ergot derivatives (ergocryptine, ergocornine, ergocristine, ergonovine, agroclavine, pergolide and terguride) have been studied with the DS-MIP using a competitive ligand binding assay protocol. The binding affinities of DS-MIP were demonstrated in the micro- or submicro-molar range for a series of ergot derivatives, whereas the binding affinities were considerably greater to natural receptors derived from the rat hypothalamus. The DS-MIP afforded the same pattern of differentiation as the natural receptors, i.e. affinity for the clavines > lysergic acid derivatives > ergopeptines. The results suggest that the discrimination for the ergot derivatives by the dopamine and serotonin sites of DS-MIP is due to the structural features and functional orientation of the phenylethylamine and indolylethylamine entities at the binding sites, and the fidelity of the dopamine and serotonin imprinted cavities.  相似文献   
8.
A molecularly imprinted polymer (MIP) enantioselective receptor for the (R)‐thalidomide enantiomer was synthesized and evaluated for its ability to deliver the drug to cancer cells. Polymer networks with precisely engineered binding sites were built into the assembled nanoparticles by a self‐organizing template in the prepolymerized mixture using methacrylic acid, a fluorescently active 2,6‐bis(acrylamido)pyridine and N,N′ methylene‐bis‐acrylamide, via both a covalent approach and a physical approach. The fine‐tuning of particle diameters was carried out by changes to the polymerizing synthesis method, the type of solvent and the amount of the poloxamer that led to an optimal formulation of the nanoparticles with sizes as small as 100 nm. Data from the 1H‐nuclear magnetic resonance spectroscopy revealed the important structural motifs of an (R)‐thalidomide‐selective cavity for two different polymerization processes. We have investigated their ability for enantiomer recognition and the potential ability to protect the chiral MIP with a self‐assembled poloxamer structure. Moreover, the effect of the smaller molecular size can not only enable favorable imaging properties but also facilitate enhanced green fluorescence intensity for the deposited MIP and the (R)‐thalidomide in the poloxamer nanoparticles in a cell‐line in which the grafted MIP being higher than the deposited one. It was also demonstrated that the deposited MIP nanoparticles had the potential to make the drug effective for attacking multidrug ‐ resistant cells. Thus, the poloxamer nanoparticles containing a thermoresponsive MIP could maximize the release of the nontoxic (R)‐thalidomide at the tumor tissue, with the help of a proper temperature shift at the site. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41930.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号