首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   1篇
自动化技术   1篇
  2019年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
An effective electrochemical sensors for hemoglobin (Hb) and myoglobin (Mb) detection was firstly developed using a simple procedure of self-assembled methylene blue-multiwalled carbon nanotubes (MB-MWNTs) nanohybrid modified on glassy carbon electrode without using any enzymes immobilization. The direct electrochemical and electrocatalytic behaviors of the modified electrode were studied using cyclic voltammetry (CV) and flow injection analysis (FIA) with amperometry. The performance of the sensor was investigated and optimized and the system was evaluated by monitoring Hb and Mb concentrations. The developed MB-MWNTs nanohybrid modified electrode showed excellent electrocatalytic activity for reduction of Hb and Mb with good stability, sensitivity and reproducibility (RSD = 3.05% and 4.5% for 50 successive injections of Hb and Mb, respectively). Under optimal conditions, the catalytic currents are linearly proportional to the concentrations of Hb and Mb in the wide range from 5 nM to 2 μM and 0.1 to 3 μM, and the corresponding detection limits are 1.5 nM and 20 nM (S/N = 3), respectively. This approach provides improved detection limit over other previous works and may provide a novel and efficient platform for the fabrication of sensors for other heme proteins.  相似文献   
2.

In this study, we propose an alternative technique for solving the forward kinematic problem of parallel manipulator which is designed based on generalized Stewart platform. The focus of this work is to predict a pose vector of a moving plate from a given set of six leg lengths. Since the data of parallel kinematics are usually available in the form of nonlinear dynamic system, several methods of system identification have been proposed in order to construct the forward kinematic model and approximate the pose vectors. Although these methods based on a multilayer perceptron (MLP) neural network provide acceptable results, MLP training suffers from convergence to local optima. Thus, we propose to use an alternative supervised learning algorithm called vector-quantized temporal associative memory (VQTAM) instead of MLP-based methods. VQTAM relying on self-organizing map architecture is used to build the mapping from the input space to the output space such that the training/testing datasets are generated from inverse kinematic model. The solutions from standard VQTAM are improved by an autoregressive (AR) model and locally linear embedding (LLE). The experimental results indicate that VQTAM with AR/LLE gives the outputs with nearly 100% prediction accuracy in the case of smooth data, while VQTAM + LLE provides the most accurate prediction on noisy data. Therefore, VQTAM + LLE is a very robust estimation method and can practically be used for solving the forward kinematic problem.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号