首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
化学工业   4篇
能源动力   1篇
轻工业   1篇
一般工业技术   2篇
冶金工业   6篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2011年   2篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  1998年   2篇
  1997年   1篇
  1993年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
2.
In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated.  相似文献   
3.
A three-dimensional model based on the generalized method of cells (GMC) principle has been used to predict the effective properties of particulate-reinforced metal matrix composites (PMMCs). The effects of constituent phases on the elastic properties of PMMCs are predicted using GMC. The predictions are compared with an assortment of finite-element predictions and experimental results available in the literature. The accuracy and the computational efficiency of the GMC model are also discussed. Moreover, the effect of particle shape and orientation on the elastic properties of PMMCs has been predicted and analyzed. Cubical and parallelepiped shaped particles having different orientations are considered for this study. Significant variations are noted on the elastic properties of the PMMC systems by altering the shape and orientation of the particles.  相似文献   
4.
The greatest challenge for a feasible hydrogen economy lies on the production of pure hydrogen and the materials for its storage with controlled release at ambient conditions. Hydrogen with its great abundance, high energy density and clean exhaust is a promising candidate to meet the current global challenges of fossil fuel depletion and green house gases emissions. Extensive research on hollow glass microspheres (HGMs) for hydrogen storage is being carried out world‐wide, but the right material for hydrogen storage is yet underway. But many other characteristics, such as the poor thermal conductivity etc. of the HGMs, restrict the hydrogen storage capacity. In this work, we have attempted to increase the thermal conductivity of HGMs by ZnO doping. The HGMs with Zn weight percentage from 0 to 10 were prepared by flame spheroidization of amber‐colored glass powder impregnated with the required amount of zinc acetate. The prepared HGMs samples were characterized using field emission‐scanning electron microscope (FE‐SEM), environmental SEM (ESEM), high‐resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy and X‐ray diffraction (XRD) techniques. The deposition of ZnO on the microsphere walls was observed using FE‐SEM, ESEM and HRTEM which was further confirmed using the XRD and ultraviolet–visible absorption data. The hydrogen storage studies done on these samples at 200 °C and 10‐bar pressure for 5 h showed that the hydrogen storage increased when the Zn percentage in the sample increased from 0 to 2%. The percentage of zinc beyond 2, in the microspheres, showed a decline in the hydrogen storage capacity. The closure of the nanopores due to the ZnO nanocrystal deposition on the microsphere surface reduced the hydrogen storage capacity. The hydrogen storage capacity of HAZn2 was found 3.26 wt% for 10‐bar pressure at 200 °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
The genome of physalis mottle tymovirus (PhMV) is 6673 nucleotides long and is rich in cytosine residues (40.58%) like other tymoviruses. The organization of the genes is also similar to that of five other tymoviruses whose sequences are known. However, PhMV has the longest 3' noncoding region as well as the longest replicase (RP) ORF. The RP sequences are similar to those of other tymoviruses (48-60% identity) whereas the coat proteins (CP) and the overlapping proteins (OP) are conserved to a lesser extent (30-50% and 26-34% respectively). A tetra peptide "GILG" was found to be present in all the tymoviral OPs. The PhMV RP also possesses the methyl transferase, polymerase and the helicase motifs found in all the Sindbis-like super group of plant viruses. A phylogenetic analysis of the six tymoviral sequences revealed that they do not have a rigid hierarchical similarity relationship.  相似文献   
6.
In this work, the hydrodynamics and mass transfer in a gas–liquid dual turbine stirred tank reactor are investigated using multiphase computational fluid dynamics coupled with population balance method (CFD–PBM). A steady state method of multiple frame of reference (MFR) approach is used to model the impeller and tank regions. The population balance for bubbles is considered using both homogeneous and inhomogeneous polydispersed flow (MUSIG) equations to account for bubble size distribution due to breakup and coalescence of bubbles. The gas–liquid mass transfer is implemented simultaneously along with the hydrodynamic simulation and the mass transfer coefficient is obtained theoretically using the equation based on the various approaches like penetration theory, slip velocity, eddy cell model and rigid based model. The CFD model predictions of local hydrodynamic parameters such as gas holdup, Sauter mean bubble diameter and interfacial area as well as averaged quantities of hydrodynamic and mass transfer parameters for different mass transfer theoretical models are compared with the reported experimental data of [Alves et al., 2002a] and [Alves et al., 2002b] . The predicted hydrodynamic and mass transfer parameters are in reasonable agreement with the experimental data.  相似文献   
7.
The coat protein gene of physalis mottle tymovirus (PhMV) was over expressed in Escherichia coli using pET-3d vector. The recombinant protein was found to self assemble into capsids in vivo. The purified recombinant capsids had an apparent s value of 56.5 S and a diameter of 29(+/-2) nm. In order to establish the role of amino and carboxy-terminal regions in capsid assembly, two amino-terminal deletions clones lacking the first 11 and 26 amino acid residues and two carboxy-terminal deletions lacking the last five and ten amino acid residues were constructed and overexpressed. The proteins lacking N-terminal 11 (PhCPN1) and 26 (PhCPN2) amino acid residues self assembled into T=3 capsids in vivo, as evident from electron microscopy, ultracentrifugation and agarose gel electrophoresis. The recombinant, PhCPN1 and PhCPN2 capsids were as stable as the empty capsids formed in vivo and encapsidated a small amount of mRNA. The monoclonal antibody PA3B2, which recognizes the epitope within region 22 to 36, failed to react with PhCPN2 capsids while it recognized the recombinant and PhCPN1 capsids. Disassembly of the capsids upon treatment with urea showed that PhCPN2 capsids were most stable. These results demonstrate that the N-terminal 26 amino acid residues are not essential for T=3 capsid assembly in PhMV. In contrast, both the proteins lacking the C-terminal five and ten amino acid residues were present only in the insoluble fraction and could not assemble into capsids, suggesting that these residues are crucial for folding and assembly of the particles.  相似文献   
8.
9.
Mesoporous nanocrystalline hydroxyapatite (nHAp) rods of size 40-75 nm long and 25 nm wide (resembling bone mineral) were synthesized under microwave irradiation without using any surfactants or modifiers. The surface area and average pore size of the nHAp were found to be 32 m(2) g(-1) and 4 nm, respectively. Rifampicin (RIF) and ciprofloxacin (CPF) loaded nHAp displayed an initial burst followed by controlled release (zero order kinetics). Combination of CPF and RIF loaded nHAp showed enhanced bacterial growth inhibition against Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli) compared to individual agent loaded nHAp and pure nHAp. In addition, decreased bacterial adhesion (90%) was observed on the surface of CPF plus RIF loaded nHAp. The biocompatibility test toward MG63 cells infected with micro-organisms showed better cell viability and alkaline phosphatase activity (ALP) for the combination of CPF and RIF loaded nHAp. The influence on cell viability of infected MG63 cells was attributed to the simultaneous and controlled release of CPF and RIF from nHAp, which prevented the emergence of subpopulations that were resistant to each other. Hence, apart from the issue of the rapid synthesis of nHAp without surfactants or modifiers, the simultaneous and controlled release of dual drugs from nHAp would be a simple, non-toxic and cost-effective method to treat bone infections.  相似文献   
10.
In this report, a novel wound dressing material has been woven by electrospinning technique and tested for its various properties. For the nanofibre mat, a mixture of polyurethane (PU) and soy protein isolate (SPI) was electrospun in conjugation with zinc oxide nanoparticles (ZnO Nps) and ciprofloxacin hydrochloride (CipHCl) to produce fibrous mats viz. PU/SPI/ZnO and PU/SPI/CipHCl. An optimum ratio (1 : 1) of PU/SPI was used as suitable polymeric ratio in order to produce homogenous nanofibres without beads having an average diameter in the range of 300–350 nm. The electrospun nanofibre‐based mats were characterised using X‐ray diffraction, Fourier transform infrared spectroscopy, ultraviolet‐visible spectroscopy, thermogravimetric analysis and scanning electron microscope. The mechanical properties of the nanofibrous mats were tested using universal testing machine. The wettability analysis was done using the contact angle measurement based on the sessile drop test. This study revealed that the electrospun PU/SPI‐based nanofibres are non‐sensitizing, non‐allergic and non‐toxic and that it can be used as a peculiar wound healing material.Inspec keywords: polymer fibres, nanofibres, nanomedicine, biomedical materials, wounds, electrospinning, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, nanofabrication, X‐ray diffraction, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, thermal analysis, scanning electron microscopy, wetting, contact angle, toxicologyOther keywords: electrospun polyurethane nanofibres, soy protein nanofibres, wound dressing applications, electrospinning, nanofibre mat, soy protein isolate, zinc oxide nanoparticles, ciprofloxacin hydrochloride, X‐ray diffraction, Fourier transform infrared spectroscopy, ultraviolet‐visible spectroscopy, thermogravimetric analysis, scanning electron microscope, mechanical properties, universal testing machine, wettability, contact angle measurement, sessile drop test, nonsensitizing nanofibres, nonallergic nanofibres, nontoxic nanofibres, wound healing material, wavelength 300 nm to 350 nm, ZnO  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号