首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   13篇
  国内免费   1篇
化学工业   26篇
金属工艺   1篇
能源动力   2篇
轻工业   2篇
无线电   2篇
一般工业技术   13篇
冶金工业   42篇
原子能技术   2篇
自动化技术   5篇
  2022年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2007年   5篇
  2006年   3篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   10篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1984年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
1.
This study is a preliminary investigation of an integrative treatment aimed at improving the efficacy of cognitive therapy (CT) for depression. The development of the treatment protocol was based on process findings, which suggested that strategies used in CT to resolve alliance ruptures may actually exacerbate problems in the therapeutic relationship. The protocol integrates, within the traditional CT treatment manual, procedures to repair alliance ruptures that are derived from or consistent with humanistic and interpersonal therapies. Although conducted by inexperienced therapists, the integrative treatment led to greater improvement than a waiting-list condition. The results also compare favorably to previous findings for CT. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
2.
This article evaluates Collective Neuro-Evolution (CONE), a cooperative co-evolutionary method for solving collective behavior tasks and increasing task performance via facilitating behavioral specialization in agent teams. Specialization is used as a problem solving mechanism, and its emergence is guided and regulated by CONE. CONE is comparatively evaluated with related methods in a simulated evolutionary robotics pursuit-evasion task. This task required multiple pursuer robots to cooperatively capture evader robots. Results indicate that CONE is appropriate for evolving specialized behaviors. The interaction of specialized behaviors produces behavioral heterogeneity in teams and collective prey capture behaviors that yield significantly higher performances compared to related methods.  相似文献   
3.
The study of collective intelligence (CI) systems is increasingly gaining interest in a variety of research and application domains. Those domains range from existing research areas such as computer networks and collective robotics to upcoming areas of agent-based and insect-based computing; also including applications on the internet and in games and movies. CI systems are complex by nature and (1) are effectively adaptive in uncertain and unknown environments, (2) can organise themselves autonomously, and (3) exhibit ‘emergent’ behaviour. Among others, multi-agent systems, complex adaptive systems, swarm intelligence and self-organising systems are considered to be such systems. The explosive wild growth of research studies of CI systems has not yet led to a systematic approach for model design of these kinds of systems. Although there have been recent efforts on the issue of system design (the complete design trajectory from identifying system requirements up to implementation), the problem of choosing and specifying a good model of a CI system is often done implicitly and sometimes even completely ignored. The aim of this article is to bring to the attention that model design is an essential as well as an integral part of system design. We present a constructive approach to systematically design, build and test models of CI systems. Because simulation is often used as a way to research CI systems, we particularly focus on models that can be used for simulation. Additionally, we show that it is not necessary to re-invent the wheel: here, we show how existing models and algorithms can be used for CI model design. The approach is illustrated by means of two example studies on a (semi-automated) multi-player game and collaborative robotics.  相似文献   
4.
We introduce a high resolution molecular jet (MoJet) printing technique for vacuum deposition of evaporated thin films and apply it to fabrication of 30 μm pixelated (800 ppi) molecular organic light emitting devices (OLEDs) based on aluminum tris(8‐hydroxyquinoline) (Alq3) and fabrication of narrow channel (15 μm) organic field effect transistors (OFETs) with pentacene channel and silver contacts. Patterned printing of both organic and metal films is demonstrated, with the operating properties of MoJet‐printed OLEDs and OFETs shown to be comparable to the performance of devices fabricated by conventional evaporative deposition through a metal stencil. We show that the MoJet printing technique is reconfigurable for digital fabrication of arbitrary patterns with multiple material sets and high print accuracy (of better than 5 μm), and scalable to fabrication on large area substrates. Analogous to the concept of “drop‐on‐demand” in Inkjet printing technology, MoJet printing is a “flux‐on‐demand” process and we show it capable of fabricating multi‐layer stacked film structures, as needed for engineered organic devices.  相似文献   
5.
Climate change, rising oil prices and concerns about future energy supplies have contributed to a growing interest in using biomass for energy purposes. Several studies have highlighted the biophysical potential of biofuel production on the African continent, and analysts see Mozambique as one of the most promising African countries. Favorable growing conditions and the availability of land, water and labor are mentioned as major drivers behind this potential. Moreover, the potential of biofuel production to generate socio-economic benefits is reflected in the government’s policy objectives for the development of the sector, such as reducing fuel import dependency and creating rural employment. This article provides an overview of biofuel developments in Mozambique and explores to what extent reality matches the suggested potential in the country.  相似文献   
6.
7.
8.
9.
The reactor pressure vessel (RPV) is the key component in the nuclear power plant, which is considered irreplaceable and can be the life-limiting feature of the operation of nuclear power plant if its mechanical properties degrade sufficiently. High temperature gas-cooled reactor (HTGR) has perfect inherent safety, which is intended to be one of the fourth generation advanced nuclear reactors. However, HTGR has different service temperature with pressurized water reactor (PWR), that the service temperature of HTGR is 250 degrees C and that of PWR is 290 degrees C. So the irradiation behaviour of RPV in HTGR is expected to be investigated. In this wok, 3 MeV Fe-ion irradiation was performed on Chinese A508-3 reactor pressure vessel steel which is employed by high-temperature gas-cooled reactors and pure Fe under room temperature (about 25 degrees C) and high temperature (250 degrees C). The ion doses were 0.1, 0.5 and 1.0 dpa for both room temperature irradiation and high temperature irradiation. SRIM modeling was performed before irradiation experiments to guide the experimental details. Positron annihilation Doppler broadening (PADB) spectroscopy experiments and nano-indentation tests (to study embrittlement behavior) were conducted for characterization. It is found that after both room temperature irradiation and high temperature irradiation, the densities of defects in the reactor pressure vessel steel and pure Fe increase, and the type of defects could be vacancy-type and solute cluster type from PADB results. The vacancy-type defect density under high temperature irradiation is lower than that under room temperature irradiation. That is because high temperature can recover the defects formed during irradiation. The hardness test results show that for both the reactor pressure vessel steel and pure Fe, the irradiation hardening increases with increasing dose. Compared to room temperature irradiation, high temperature irradiation can produce more solute clusters and fewer vacancy-type defects in the reactor pressure vessel steel. So the irradiation hardening of the reactor pressure vessel steel might be caused mainly by the formation of solute clusters.  相似文献   
10.
The irradiation and annealing behavior of Chinese A508-3 reactor pressure vessel (RPV) steel (0.04 wt% Cu) after 3 MeV Fe-ion irradiation ranging from 0.1 to 20 dpa at room temperature (called RTRPV) and high temperature (250?°C, called HTRPV) was studied by positron annihilation Doppler broadening (PADB) spectroscopy and nano-indentation hardness. PADB showed that the density of vacancy-type defects was higher for low-temperature irradiations. The higher hardness was found after high-temperature irradiation because of the formation of solute clusters during irradiation. Positron annihilation measurements revealed the interaction and clustering of vacancies with solute clusters which were introduced by Fe-ion irradiation. For both RTRPVs and HTRPVs, the positron defect parameter and positron diffusion length showed the recovery of the irradiation-induced defects. Total recovery was observed after annealing at 450 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号