首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
电工技术   1篇
化学工业   1篇
金属工艺   1篇
建筑科学   1篇
能源动力   4篇
一般工业技术   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 0 毫秒
1
1.
The present work summarizes the recent activities of our laboratory in the field of solar-aided hydrogen production with structured monolithic solar reactors. This reactor concept, “transferred” from the well-known automobile exhaust catalytic after-treatment systems, employs ceramic supports optimized to absorb effectively solar radiation and develop sufficiently high temperatures, that are coated with active materials capable to perform/catalyze a variety of “solar-aided” reactions for the production of hydrogen such as water splitting or natural gas reforming. Our work evolves in an integrated approach starting from the synthesis of active powders tailored to particular hydrogen production reactions, their deposition upon porous absorbers, testing of relevant properties of merit such as thermomechanical stability and hydrogen yield and finally to the design, operation simulation and performance optimization of structured monolithic solar hydrogen production reactors. This approach, among other things, has culminated to the world's first closed, solar-thermochemical cycle in operation that is capable of continuous hydrogen production employing entirely renewable and abundant energy sources and raw materials – solar energy and water, respectively – without any CO2 emissions and holds, thus, a significant potential for large-scale, emissions-free hydrogen production, particularly for regions of the world that lack indigenous resources but are endowed with ample solar energy.  相似文献   
2.
Structured bodies from redox materials are a key element for the implementation of thermochemical cycles on suitable reactors for the solar H2O splitting. In the current work different configurations of nickel ferrite were investigated with respect to their performance in H2O splitting: i) powder, ii) disk, iii) honeycomb flow-through monoliths. The structured bodies were prepared via pressing and extrusion techniques. The performance of the different structures was affected significantly by differences in the structural characteristics. Alternative approaches involving casting techniques for the structuring of nickel ferrite porous bodies were also investigated. This work constitutes a preliminary attempt towards tuning such characteristics to achieve enhanced and cycle-to-cycle stable production yields.  相似文献   
3.
In this study, a robust and efficient decentralized fuel processor based on the direct autothermal reforming (ATR) of biogas with a nominal production rate of 50 Nm3/h of hydrogen and a plant efficiency of about 65% was developed and tested. The ATR unit is composed of a structured catalyst support for the biogas reforming close coupled to a catalytic wall-flow filter to retain eventual soot particles.The performance of the conventional random foam and homogeneous lattice supports structures for the production of hydrogen from the ATR reaction was investigated. 15–0.05 wt%-Ni-Rh/MgAl2O4-SiSiC structured catalyst and LiFeO2-SiC monolith were selected for the conversion of biogas to hydrogen and for the syngas post-treatment process, respectively. For all the experiments, a model synthetic biogas was used and the catalytic activities were evaluated in three different experimental facilities: lab bench, pilot test rig and demonstration plant. High methane conversions (>95%) and hydrogen yields (>1.8) reached in the lab bench were also achieved in the pilot and demonstration plant operating at different GHSV.Results of duration test using a foam coupled to the filter has demonstrated that the pre-commercial processor is reliable while offering a satisfactory reproducibility and negligible pressure drop. A thermodynamic equilibrium and a cold gas efficiency of 90% were reached for an inlet temperature of 500 °C, O/C: 1.1 and S/C: 2.0, as predicted with the Aspen simulation.  相似文献   
4.
In a previous work of the authors (AIChE Journal 2013; 59(4): 1213-1225) on the characterization of the performance of redox material compositions during two-step thermochemical splitting of water, it was observed that fitting of the obtained hydrogen and oxygen concentration profiles with a reaction model based on simple first order reaction rates could describe adequately only the first part of the evolution curves. This suggested that more complicated reaction models taking into account the structure of the redox material are needed to describe the whole extent of the experimental data. Based on the above, a minimum set of experiments for water splitting thermochemical cycles over a Nickel-ferrite was deigned and performed involving an increased duration of the reaction steps. A new extended model was derived for the water splitting and thermal reduction reactions, which considers two oxygen storage regions of the redox material communicating to each other by a solid state diffusion mechanism. The inclusion of two state variables instead of one has a significant effect on the reaction dynamics and renders the model capable to explain the dynamics of the convergence of the thermochemical cycles to a periodic steady state, observed experimentally in the previous work.  相似文献   
5.
Aerosol spray pyrolysis (ASP) was employed for the synthesis of oxygen-deficient doped ferrite systems to be used as redox materials for the production of solar Hydrogen from water via a two-step thermochemical water-splitting cycle. In the first step (water splitting) the reduced state of a metal oxide is oxidized by taking oxygen from water and producing hydrogen; in the second step (regeneration) it is reduced again by delivering some of its lattice oxygen. Redox materials of the iron spinel family doped with other bivalent metals (Zn, Ni, Mn) were synthesized via ASP, characterized and evaluated with respect to their water-splitting activity. Organic additives, like citric acid, in the precursor solutions were found to result in products with finer particle size and to enhance the water-splitting activity of the synthesized materials. Material performance (water splitting activity, hydrogen yield, regeneration capability) was found to depend on the dopants’ kind and stoichiometry; in particular high percentages of Zn dopant seem to enhance the overall materials’ performance. ASP synthesized materials have demonstrated higher water conversion and hydrogen yields than materials of the same composition synthesized through solid-state routes. The ASP synthesis process was scaled-up successfully maintaining the favorable characteristics of the synthesized materials.  相似文献   
6.
Stress transfer between reinforcing bars and concrete is engaged through rib translation relative to concrete, and comprises longitudinal bond stresses and radial pressure. The radial pressure is equilibrated by hoop tension undertaken by the concrete cover. Owing to concrete’s poor tensile properties in terms of strength and deformability, the equilibrium is instantly released upon radial cracking of the cover along the anchorage with commensurate abrupt loss of the bond strength. Any improvement of the matrix tensile properties is expected to favorably affect bond in terms of strength, resilience to pullout slip, residual resistance and controlled slippage.The aim of this paper is to investigate the local bond of steel bars developed in adverse tensile stress conditions in the concrete cover. In the tests, the matrix comprises a novel, strain resilient cementitious composite (SRCC) reinforced with polypropylene fibers (PP) with the synergistic action of carbon nano-tubes (CNT). Local bond is developed over a short anchorage length occurring in the constant moment region of a four-point bending short beam. Parameters of investigation were the material structure (comprising a basic control mix, reinforced with CNTs and/or PP fibers) and the age of testing. Accompanying tests used to characterize the cementitious material were also conducted. The test results illustrate that all the benefits gained due to the synergy between PP fibers and CNTs in the matrix, namely the maintenance of the multi-cracking effect with time, the increased strength and deformability as well as the highly increased material toughness, were imparted in the recorded bond response. The local bond response curves thus obtained were marked by a resilient appearance exhibiting sustained strength up to large levels of controlled bar-slip; the elasto-plastic bond response envelope was a result of the confining synergistic effect of CNTs and the PP fibers, and it occurred even without bar yielding.  相似文献   
7.
In this paper, network constrained setting of voltage control variables based on probabilistic load flow techniques is presented. The method determines constraint violations for a whole planning period together with the probability of each violation and leads to the satisfaction of these constraints with a minimum number of control corrective actions in a desired order. The method is applied to define fixed positions of tap-changers and reactive compensation capacitors for voltage control of a realistic study case network with increased wind power penetration. Results show that the proposed method can be effectively applied within the available control means for the limitation of voltages within desired limits at all load buses for various degrees of wind power penetration.  相似文献   
8.
The present study deals with Aerosol Spray Pyrolysis (ASP) synthesis of two families of nanostructured redox materials targeted to two different environmental applications: transition-metal-doped ferrites and base metal-doped cerium oxide, used for hydrogen production through solar-assisted water splitting and for catalytic soot oxidation, respectively. The synthesized powders were characterized with respect to their phase composition, morphology and particle size distribution by XRD, SEM and TEM analysis, which have shown their nanostructured character. Doped ferrites were evaluated, with respect to their hydrogen production activity from water dissociation, in an in-house built water-splitting testing rig. ASP materials proved to be very active water splitters demonstrating higher water conversion and hydrogen yields than materials of the same composition synthesized through Solid State Synthesis (SSS), with material performance depending on the dopants’ kind and stoichiometry. Base metal-doped cerium oxides were evaluated with respect to their direct soot oxidation activity, via Thermogravimetric Analysis (TGA), as well as on a diesel engine bench under realistic conditions. It was found that doping improves their activity and that they enhance soot oxidation at lower temperatures compared to materials synthesized through Liquid Phase Self-propagating High temperature Synthesis (LPSHS).  相似文献   
9.
The present work deals with the modelling and simulation of a biogas Demo-processor for green hydrogen production via Autothermal reforming (ATR) process aimed at covering a wide span of potential applications, from fuel cells feed up to the production of pure hydrogen. The biogas ATR unit is composed of a structured catalyst support close coupled to a wall-flow filter that retain soot particles that can be formed during the ATR reaction. Modelling and simulation (CFD and FEM) were carried out to select the innovative catalyst support with promising results for the fuel processor. 3D digital sample reconstruction was performed for the selection of the appropriate porous structures commercially available for the soot filtration and furthermore, 2D CFD analysis was also used to examine flow uniformity issues due to soot trap integration downstream to the ATR. Moreover, the inherent flexibility of the model performed allowed its application in the assessment of the Demonstration plant operating in real conditions. Besides, Aspen simulation has demonstrated that the ATR process is the most promising process to hydrogen production compared to other types of reforming process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号