首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学工业   4篇
金属工艺   1篇
机械仪表   2篇
能源动力   1篇
石油天然气   1篇
一般工业技术   4篇
冶金工业   5篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1967年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
The level of nonlinearity in the elastic response of materials containing structural damage is far greater than in materials with no structural damage. This is the basis for nonlinear wave diagnostics of damage, methods which are remarkably sensitive to the detection and progression of damage in materials. Nonlinear wave modulation spectroscopy (NWMS) is one exemplary method in this class of dynamic nondestructive evaluation techniques. The method focuses on the application of harmonics and sum and difference frequency to discern damage in materials. It consists of exciting a sample with continuous waves of two separate frequencies simultaneously, and inspecting the harmonics of the two waves, and their sum and difference frequencies (sidebands). Undamaged materials are essentially linear in their response to the two waves, while the same material, when damaged, becomes highly nonlinear, manifested by harmonics and sideband generation. We illustrate the method by experiments on uncracked and cracked Plexiglas and sandstone samples, and by applying it to intact and damaged engine components.  相似文献   
2.
3.
Ceria-based materials are prospective electrolytes for intermediate-temperature solid oxide fuel cells. The ionic conductivities of ceria-doped with Sm, Gd, Dy and Er are investigated as a function of temperature by using a.c. impedance. The results show that conductivity depends on the rare earth dopant, its amount, an appearance of second phase, and the microstructure. With 10 mol% dopant, Sm exhibits higher conductivity than Gd, Dy and Er, respectively. With an increase in Dy content, the total conductivity increases, which is attributed to an increase in grain boundary conductivity. By contrast, an increasing amount of Er from 10 to 20 mol% reduces the conductivity of ceria and results in a separated phase of Er2O3 as detected by X-ray diffraction and scanning electron microscopy. In addition, the grain size corresponding to grain boundary density affects the conductivity due to the contributions from the grain interior and grain boundary conductivities.  相似文献   
4.
Small amounts of lanthanum and potassium dopants could modify the microstructure and dielectric properties of 0.90Bi0.5Na0.5TiO3-0.10PbTiO3 and 0.88Bi0.5Na0.5TiO3-0.12PbTiO3 solid solutions. La lowered both phase transition temperatures of ferroelectric to antiferroelectric and antiferroelectric to paraelectric. It also decreased the maximum value of relative dielectric permittivity of the composition. In contrast, K shifted the first phase transition to the lower temperature but insignificantly affected the Curie temperature and raised the maximum dielectric permittivity. Furthermore, K influenced the microstructure in the way to enhance the long grains of this solid solution but La inhibited this effect.  相似文献   
5.
6.
Lanthanum, Potassium and Niobium have been selected as cation dopants to modify the relaxor characteristics of 0.90(Bi0.5Na0.5TiO3)–0.10PbTiO3. The experimental results show that La lowers the phase transition temperatures and decreases the grain size. In contrast, the grain size of K-doped composition tends to increase. Furthermore, the maximum of dielectric permittivity and the Curie temperature increase as compared to those of La-doped material. La can improve the broadness of dielectric permittivity of 0.90(Bi0.5Na0.5TiO3)–0.10PbTiO3. However, Nb is a better promising dopant for enhancing the relaxor behavior for this composition.  相似文献   
7.
Sintering YBa2Cu3O7- x bulk forms at 1050°C followed by annealing at 980°C causes the development of a thick oriented surface layer (Lotgering factor = 0.7). The thickness of the layer depends on the thermal treatment, which is a two-step sintering process. Firing at 1050°C for 2.5 h followed by 30 h at 980°C leads to the development of a 0.1-mm-thick surface layer, with clear indication that longer annealing would result in a thicker film. Some orientation develops during un-axial compaction of the powders. Lotgering orientation factor calculation from X-ray diffraction analysis. SEM, and TEM were used to characterize the microstructure of these samples. T c was similar to that of conventionally processed high-density samples, between 83 and 87 K. Some thermal treatments resulted in samples that displayed high resistivity above T c , possibly caused by segregation of Cu to the grain boundaries.  相似文献   
8.
9.
Bi0.5Na0.5TiO3 (BNT) modified with Pb showed an increased and broadened dielectric constant and limited grain growth. Pb also lowered the first transition temperature. The phases of BNT were confirmed to be ferroelectric at room temperature which transformed to antiferroelectric above 220°C. When BNT was doped with 10% Pb, the first transition decreased to 140°C and abruptly disappeared in the composition with 17% Pb. The crystal structure of 17%-Pb-doped BNT at room temperature is tetragonal, which differs from the rhombohedral structure at lower Pb contents. Thus, the phase boundary between rhombohedral and tetragonal ferroelectric phase was determined to be between 15% to 17% Pb in this study.  相似文献   
10.
Abstract

The level of nonlinearity in the elastic response of materials containing structural damage is far greater than in materials with no structural damage. This is the basis for nonlinear wave diagnostics of damage, methods which are remarkably sensitive to the detection and progression of damage in materials. Nonlinear wave modulation spectroscopy (NWMS) is one exemplary method in this class of dynamic nondestructive evaluation techniques. The method focuses on the application of harmonics and sum and difference frequency to discern damage in materials. It consists of exciting a sample with continuous waves of two separate frequencies simultaneously, and inspecting the harmonics of the two waves, and their sum and difference frequencies (sidebands). Undamaged materials are essentially linear in their response to the two waves, while the same material, when damaged, becomes highly nonlinear, manifested by harmonics and sideband generation. We illustrate the method by experiments on uncracked and cracked Plexiglas and sandstone samples, and by applying it to intact and damaged engine components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号