首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学工业   6篇
能源动力   1篇
轻工业   1篇
石油天然气   1篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2005年   1篇
  2001年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有9条查询结果,搜索用时 312 毫秒
1
1.
This paper examines the important dimensionless numbers that control emulsion polymerization in a tubular reactor. It was found that the activation energy of polymerization was of major importance, while the role of monomer diffusion was not very significant. By selecting certain combinations of the dimensionless numbers, changes occurring during scaleup from a small tubular diameter to a larger diameter can be approximated.  相似文献   
2.
A mathematical model based on the distinct element method (DEM) was developed to investigate the hydrodynamics in a gas-solid down-flow circulating fluidized bed reactor (downer). The models consist of the equations of particle motion and fluid motion. The contact force is calculated by using the analogy of a spring, dashpot, and friction slider. Simulation results show that the radial solids holdup and particle velocity profiles are uniform in the core region. Near the wall, the solids holdup is higher with lower particle velocity. An increase in the particle size decreases the solids holdup and increases the particle velocity. The solids holdup decreases with superficial gas velocity but increases with solids circulation rate. Particle velocity increases with gas velocity and solids circulation rate. The solids holdup and particle velocity are almost uniform along the height of the downer except near the distributor. The hydrodynamic behavior from this simulation showed trends similar to those of the experimental results. The results obtained from this model fit better with the experimental results than Kimm's and Bolkan's models do.  相似文献   
3.
A general solution strategy for the film model for gas–liquid reaction has been proposed using the boundary element method (BEM) of discretization over subintervals in gas–liquid films. Non-isothermal effects in the film are included and the associated temperature changes near the gas–liquid interface are computed. The accuracy of the solution procedure is first established using some simple isothermal and non-isothermal benchmark problems and with semi-analytical solutions. Then illustrative results are presented for a non-isothermal series reaction system to illustrate effects of various parameters such as Arrhenius number, solubility changes with temperature, effect of volatility of the liquid phase reactant, etc. The proposed solution method provides fast and accurate values for interfacial fluxes and fluxes into the bulk liquid in addition to concentration profiles. Hence the method is extremely useful for coupling local effects of the film model with global effects based on CFD coupled compartmental model for gas–liquid reactors.  相似文献   
4.
5.
6.
This work designed and tested innovative flow channels in order to improve water management in a polymer electrolyte membrane fuel cell (PEMFC). The design employed slanted channels with an angle of 20° in a flow plate to collect the liquid water that permeated from the gas diffusion layers. The effects of orientations of the slanted channels in up-slanted and down-slanted directions and relative humidity levels on the cell performance were investigated. The experimental results showed that modifying the anode flow field using down-slanted channels provided higher cell performance. Water concentration at the gas diffusion layer is reduced resulting in more back diffusion of water from the cathode to anode, thus inducing membrane hydration and improving the conductivity. Promotion of water removal by applying down-slanted channels in the cathode side did not improve the performance. This work has demonstrated that channel cross-section design alone could improve the PEM fuel cell performance. The anode down-slanted cell indeed improved the performances at extremely wet condition and the power was equally good as that without modified flow channel at less wet condition.  相似文献   
7.
Gas–liquid reactors are widely used in many industrial processes such as oxidation, hydroformylation, chlorination, etc. The paper develops comprehensive model for reactors using the mixing cell approach. It incorporates heat and mass transfer effects in the film and uses a boundary element method to solve the film model equations. The fluxes obtained at the interface are then directly used as the link to the reactor model. Simple isothermal and non-isothermal reactions were numerically tested. Application to two industrially important case studies, chlorination of butanoic acid and oxidation of cyclohexane are briefly illustrated. For the autocatalytic chlorination of butanoic acid, the yield of desired product, monochlorobutanoic acid, is favored by the high degree of mixing in the liquid phase. Therefore, this reaction should be carried out in a CSTR. A series of five bubble tanks with parallel gas reactant feed for cyclohexane oxidation was also simulated. It was found that the cyclohexane conversion is low while the oxygen conversion is relatively high and almost constant in each tank. Due to the complex multistep nature of this reaction scheme, oxygen is consumed in many steps of oxidation and selectivity of main products (which are intermediate products in the reaction scheme) depends on the critical control of over-oxidation in the kinetic mechanism.  相似文献   
8.
Titanium substrates were oxidized in oxygen or air at temperatures of 600°–800°C, then immersed in solutions of 2.0m M – 20.7m M CaCl2 and 1.2m M –12.4m M KH2PO4 for aging periods of 0.5–10 d. The titanium surface was successfully coated with hydroxyapatite (HAP) when the substrates were oxidized in oxygen gas at 610°C for 1 h and then aged in a solution of 2.00m M Ca2+ and 1.20m M PO43−. The Ca/P ratio of the surface coating increased toward its stoichiometric HAP value (return 10/6) as the aging time increased; the Ca/P ratio attained a value of 1.66 after 10 d.  相似文献   
9.
Ultraporous Pd nanocrystals for electrocatalysis applications were fabricated using a direct electrodeposition method on three differing carbon supports: flexible carbon fiber paper (CFP), and CFP modified with either graphene oxide nanosheets or their chemically reduced forms using a simple spray coating technique. The electrocatalytic activity of these electrodes was investigated for the direct electro‐oxidation reaction of methanol in alkaline media. Pd deposited on the CFP modified with reduced graphene oxide (rGO) has excellent poisoning tolerance to carbonaceous species and a significantly better catalytic activity toward methanol oxidation than the other two catalyst support materials. Pd/rGO/CFP in 2.0 M CH3OH in 2.0 M NaOH yields a specific current density of 241 mAmg–1 cm–2 determined at the anodic oxidation peak. It is believed that the collaborative effects due to the three‐dimensional ultraporous Pd nanocrystals and fast electron transfer owing to high conductivity of rGO nanosheets play an important role in enhancing the catalytic performance of Pd/rGO/CFP toward methanol oxidation in alkali media.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号