首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   11篇
  国内免费   4篇
电工技术   3篇
化学工业   37篇
金属工艺   9篇
机械仪表   5篇
建筑科学   5篇
能源动力   5篇
轻工业   21篇
水利工程   4篇
石油天然气   1篇
无线电   12篇
一般工业技术   16篇
冶金工业   7篇
原子能技术   3篇
自动化技术   22篇
  2023年   2篇
  2022年   8篇
  2021年   13篇
  2020年   6篇
  2019年   15篇
  2018年   15篇
  2017年   9篇
  2016年   9篇
  2015年   11篇
  2014年   13篇
  2013年   12篇
  2012年   8篇
  2011年   11篇
  2010年   3篇
  2009年   7篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
排序方式: 共有150条查询结果,搜索用时 218 毫秒
1.
THERMAL SPRAYING provides a large range ofcoatings,which increase the wear resistance ofsubstrates[1].One of the major coating families is thecermet,composed of hard ceramic particles with ametallic binder.The most commonly used cermetcoatings in industrial applications are based on eitherthe WC-Co or the Cr3C2-Ni(Cr)systems with WC-17wt%Co and Cr3C2-25wt%Ni(Cr)being typicalcompositions[2,3].Although WC-Co deposits are hardand wear resistant at ambient temperatures their rangeof ap…  相似文献   
2.
Low-velocity impact tests are performed on fiberglass/AZ31B-H24 magnesium fiber-metal laminates (FMLs) with various configurations in order to gain a better understanding of the effect of an impactor's features on the response of this type of FML. For that, impactors with two different shapes (hemispherical and sharp-edged) and sizes are used to impact the specimens. The impact response data, such as the deformation of the contact location and energy absorption, is obtained directly during the impact tests through the impact equipment, while mechanical sectioning was carried out to establish the extent of delaminated area and post-impact residual deformation. While the sharp-edged impactor caused the development of cracks on the metal constituent, and delamination within the specimens, the hemispherical ones imposed more influence over the residual deformation. Noticeable differences are observed in response of FML specimens made with two and three layers of magnesium, especially with respect to the energy absorption capacity. Moreover, finite-element analysis, as a major part of this study, has been employed to simulate the low-velocity impact response of FML specimens. The behavior of specimens has been simulated using the commercial finite-element code ABAQUS. The results imply that there is a good agreement between the experimental and numerical results.  相似文献   
3.
In this article, the dynamic response of a viscoelastic beam with moderately large deflection subjected to transverse and axial loads is studied using the first-order shear deformation theory. The von-Karman strain displacement relations and Hooke's law are used for formulation. The solution of the equations, which are a system of nonlinear partial differential equations, are obtained analytically using the perturbation technique in conjunction with the eigenfunction expansion method. The results are compared with the finite elements method. Also, a sensitivity analysis is performed, and the effects of geometrical and material properties are investigated on the response.  相似文献   
4.
Metal organic frameworks (MOFs) with marvelous properties have aroused enormous attention for different application especially gas adsorption and separation. In this regard, fabrication of MOF hybrids with carbon based materials is new strategy to upgrade MOF performance. In this study CuBTC (Copper benzene-1,3,5-tricarboxylic acid)/graphene oxide (GO) composite was synthesized and characterized by BET, SEM, TGA, XRD and FT-IR techniques. Then CuBTC and CuBTC/GO composite were incorporated into polysulfone (PSF) polymer to construct mixed matrix membranes (MMMs). The obtained membranes were characterized by SEM, TGA, XRD and tensile tests and their gas permeability was measured. The results were compared to those of CuBTC/PSF MMMs. It was revealed that CuBTC/GO composite as filler showed superior performance relative to CuBTC. For instance, 15 wt% loading of CuBTC/GO in PSF represented outstanding gas separation behavior while the same loading of CuBTC in PSF deteriorated performance of MMM. Well particle dispersion and favorable polymer-filler interaction were responsible for such observed difference. A high H2/CH4 and H2/N2 selectivity of 80.03 and 70.46 were recorded for CuBTC/GO in PSF (15 wt%) compared to 44.56 and 40.92 for CuBTC in PSF (15 wt%).  相似文献   
5.
Journal of Porous Materials - The development of theranostic nanostructures is one of the most advanced branches of pharmaceutical and medical sciences in the world today. Due to the unique...  相似文献   
6.
Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency.  相似文献   
7.
A new one-dimensional silver(I) coordination polymer, [Ag(μ-bpfb)(NO3)]n (1); bpfb = N,N′-bis(4-pyridylformamide)-1,4-benzene, has been synthesized and characterized by IR, 1H NMR and 13C NMR spectroscopy. The single crystal X-ray data show that the silver(I) 1D coordination polymer grows into a three-dimensional network by hydrogen bonding and π–π stacking interactions. Compound 1 with nanorod morphology was also prepared by sonochemical method. The cetyltrimethylammonium bromide (CTAB) as a cationic surfactant was used in reverse micelles technique to obtain spongy silver(I) bromide nanoparticles from compound 1. Also, different silver nanoparticles have been prepared via direct calcination at 673 K and thermal decomposition in oleic acid from compound 1. The nanostructures of [Ag(μ-bpfb)(NO3)]n (1), silver and silver(I) bromide were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDAX) analysis. Thermal stability of compound 1 in both bulk and nano-sized form was studied by thermal gravimetric (TG) and differential thermal (DT) analyses.  相似文献   
8.
Waste glass powder was used as a low cost precursor for production of colloidal nanosilica for the first time. The process includes production of wet silica gel and thermal peptization of the wet gel. Purification of the glass powder and wet gel production were initiated by acid washing. The obtained powder was reacted with sodium hydroxide to produce wet silica gel. Type of the applied acid was examined in one factor at a time route. Temperature of the alkaline step and concentrations of the applied acid and base were investigated using Taguchi design of experiments. After finding the best combination of the investigated factor levels in production of the wet gel, time of the stabilization in thermal peptization was studied. Characterizations of the wet gel and colloidal silica were performed by XRF, DLS, FESEM, TEM, FTIR and N2 sorption evaluation. Accordingly pure and stable colloidal nanosilica (98.50%) with average particle size of 21.9?nm was produced from the glass powder successfully. Specific surface area of the dried porous optimum sample was 83.63?m2/g.  相似文献   
9.
A new hybrid electrochemical capacitor based on an activated carbon negative electrode, lead dioxide thin film and nanowire array positive electrode with an electrolyte made of a lead salt dissolved in methanesulfonic acid was investigated. It is shown that the maximum energy density and specific capacity of the C/PbO2 nanowire system increase during the first 50 cycles before reaching their maximum values, which are 29 Wh kg−1 and 34 F g−1, respectively, at a current density of 10 mA cm−2 and a depth of discharge (positive active electrode material) of 3.8%, that corresponds to a 22C rate. This is 7–8 times higher than the corresponding maximum values reached with a C/PbO2 thin film cell operated in the same conditions. After an initial activation period, the performances of the C/PbO2 nanowire system stay constant and do not show any sign of degradation during more than 5000 cycles. For comparison, the C/PbO2 thin film system exhibits a 50% decrease of its performances in similar conditions.  相似文献   
10.
In this paper, the hydraulic characteristics of a sharp crested trapezoidal side weir have been experimentally and theoretically investigated. It was found that the DeMarchi coefficient of discharge for a sharp crested trapezoidal side weir in subcritical flow is related to the main channel Froude number, the side slope of weir, ratio of weir height to upstream depth of flow and ratio of weir length to upstream depth of flow. Suitable equations for the discharge coefficient are also obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号