首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
金属工艺   1篇
建筑科学   1篇
矿业工程   6篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
排序方式: 共有8条查询结果,搜索用时 93 毫秒
1
1.
为了探究壁面滑移效应影响下的充填料浆管道输送阻力的变化特征,建立了考虑壁面滑移效应的管道输送模型,利用Comsol数值模拟软件分析了料浆浓度、管径及灰砂比对管道阻力损失的影响。研究表明 :①模型计算结果的相对误差在合理范围内,该模型用来计算考虑壁面滑移效应的充填料浆管道输送阻力是可靠的;②考虑壁面滑移效应的情况下,各因素对管道阻力的影响程度依次为管径>质量浓度>灰砂比,管径 增大,壁面剪切作用力减小,颗粒迁移运动变缓,滑移效应减弱,管道输送阻力降低幅度减小;③在不同浓度范围内料浆滑移层厚度的主控因素不同,导致输送阻力随浓度增大的幅度不同;④灰砂比较低时,管道输 送阻力的增长速率较低,随着灰砂比增大,管道输送阻力快速增大。以冀东地区某矿山为研究背景进行了数值模拟,得到充填料浆管道输送的最佳参数为质量浓度66%、68%,灰砂比1∶8。  相似文献   
2.
为探究细颗粒尾砂含量对充填体强度特性的影响,利用液压伺服试验系统进行充填体单轴抗压强度试验,分析细颗粒尾砂含量、水泥含量和料浆浓度对充填体强度的影响规律。结果表明:细颗粒尾砂含量对充填体强度存在一定影响,充填体强度影响因素敏感性顺序为水泥含量、料浆浓度和细颗粒尾砂含量;各因素之间存在交互作用,水泥含量和料浆浓度一定时,细颗粒尾砂含量在35%~50%范围时,充填体强度最大;当水泥含量高于15%,料浆浓度高于72%后,充填体强度急剧上升。推荐矿山在充填过程中使细颗粒尾砂含量处于50%左右,同时提高浓度,降低水泥用量,可降低充填成本,增加企业经济效益。  相似文献   
3.
为了探明膏体在大流量输送条件下输送参数的合理范围,采用comsol仿真软件建立倍线为4的"L管"模型,并根据流体力学理论对管内浆体流动行为作出基本的假设,采用层流模块与粒子追踪模块相结合的方式,分析流量及管径因素对管内阻力损失的影响规律,并建立不同浓度条件下膏体的管道输送阻力损失模型。研究结果表明:膏体管内阻力损失与管径呈反比例下降的趋势,与流量呈正相关且不同流量情况下阻力损失增长率不同;以侵蚀率及管道输送阻力为评价指标,在满足矿山日常充填需求的情况下对管道输送参数的合理范围进行探讨,得出最佳输送管径为160,180mm,浓度为68%~70%。  相似文献   
4.
为分析大流量管道输送过程中温度上升对料浆管流特征的影响,得出高温环境下料浆最佳输送管径及初始流速等参数,建立了充填料浆输送L管模型,基于流变试验获取料浆塑性黏度和屈服应力,利用COMSOL数值模拟软件分析了高温环境下不同温度、管径以及初始速度对应的管流速度场特性。结果表明:随着温度升高,充填料浆屈服应力以及塑性黏度随之降低;在弯管与水平管相接处,流态不稳定,料浆速度层出现较大变化,由塞流推进转化为速度自上而下递增的流动模式,易造成堵管、爆管;温度提高会导致中心最大流核区面积减小,温度为40、50、60 ℃时,最大流核区径向长度分别为0.09、0.07、0.05 m,减小率为22.2%,最大流速随之增加,当温度为40 ℃时,径向最大流速为2.978 m/s,温度增加至60 ℃,最大流速增大至3.135 m/s;随着管径增大,塞流最大流速区面积增加,管径为200 mm、240 mm时,最大流速区径向长度分别为0.1 m、0.12 m,最大流速随之减小,管径自200 mm增大至240 mm,最大流速由2.977 m/s变为2.876 m/s;随着进口速度增加,料浆中心最大流速区域增大,对塞流区域面积大小影响较小。基于上述试验成果,为减少输送阻力损失,提高矿山效益,建议矿山输送料浆参数选取温度40~50 ℃,管径200 mm,初始流速2.5 m/s。上述分析可为矿山充填设计及进一步研究管道输送流态问题提供一定的理论依据。  相似文献   
5.
为探究料浆温度影响下细尾砂膏体大流量自流输送特 征,构建了细尾砂膏体自流输送水力坡度模型;基于数值模 拟,分析了考虑料浆温度影响的不同流量、充填倍线细尾砂 膏体自流输送水力坡度特征.所建立的水力坡度模型的测 量误差为4.85%、2.21%,迭代计算56次、68次后收敛,表明 该模型具有较高的可靠性及合理性.研究结果表明,随流量 增加,细尾砂膏体的水力坡度增大,且充填倍线越小,增加趋 势越趋于线性;膏体输送过程粗细颗粒间存在“非均匀干扰 沉降”现象,随充填倍线增加,粗颗粒受细颗粒与料浆溶液影 响而非均匀沉降,导致颗粒相互作用数量增多,水力坡度升 高;膏体粗颗粒运移存在一定规律,屈服应力是影响颗粒运 移的最关键因素,随充填倍线增加,膏体剪切流动区域面积 增加,水力坡度升高;基于试验结果,为实现自流输送,建议 输送流量选取220m3/h,充填倍线选择5.  相似文献   
6.
为多尺度探究养护龄期对充填体力学特性的影响,对不同龄期充 填 体 开 展 了 超 声 波 测 试、单 轴 压 缩 试 验、电 镜SEM 微观结构扫描,从宏—细—微观三个尺度分析养护龄期对充填体力学特性的影响.研究结果表明:养护龄期越长,充填体应力 应变曲线越陡,峰值应力越大,残余应力越大;充填体的波速、弹性模量、抗压强度随龄期的延长逐渐增大,增长速率逐渐减小;充填体的抗压强度、弹性模量与波速具有良好的指数相关性,二者的增长速度随波速的增大而增大;随着养护龄期的延长,充填体内部Ca(OH)2 晶体尺寸变小,钙矾石的 形 态 由 细 长 针 状 演 化 为 短 粗 柱 状,水 化 产 物C—S—H 网状凝胶数量明显增多,孔隙数量和孔隙率减少,结构致密性增加,充填体抗压强度提高.  相似文献   
7.
为探究初始料浆温度变化对超细尾砂料浆流变参数的影响及管道内料浆温度分布特征,开展了超细尾砂料浆流变试验,进行了料浆流动传热仿真试验,推导了流变参数预测模型及管输温度分布计算模型。结果表明:料浆温度与超细尾砂料浆屈服应力、塑性黏度均遵循Exponential Decay 2拟合模型;不同料浆初始温度下管径与管道内料浆温度符合Asym2sig拟合模型,将其模型参数与管径进行深度拟合分析,利用管径表示拟合模型中的变化参量,实现了变量的统一;超细尾砂料浆流动时摩擦生热高于水化产热,依据传热学理论,超细尾砂料浆经管道内摩擦产热传热、水化产热传热以及与外界环境交换传热后达到动态平衡;基于流变参数预测模型及管道内温度分布模型,可在已知管径、料浆初始温度条件下预测管道内料浆屈服应力和塑性黏度。  相似文献   
8.
为探究胶结充填体早期损伤对后期力学性能影响机制,将龄期3,7,14,21 d的充填体施加4种不同程度的静载损伤,养护28 d后开展单轴压缩试验、超声波测试、电镜微观结构扫描,从宏–细–微三个尺度探讨充填体早期损伤对后期力学性能影响机制。结果表明:损伤对龄期3和7 d充填体后期抗压强度影响较小,在一定压损条件下充填体后期抗压强度上升,对龄期14和21 d充填体后期抗压强度均产生弱化作用,对各个龄期充填体后期弹性变形能力起到强化作用;基于波速变化建立损伤程度与充填体力学特性之间的定量关系,发现损伤龄期3和7 d充填体存在损伤阈值和修复阈值;随着损伤程度的增大,充填体内部结构由数量较多的细小裂隙逐渐扩大为单一裂隙,裂隙断面处的连接物质主要为水化产物C-S-H网状凝胶;龄期3和7 d充填体内部存在大量未完全水化的水泥颗粒,养护后期产生的凝胶产物足以填充大部分损伤裂隙,故损伤对其后期抗压强度影响较小,而龄期14和21 d充填体未完全水化的水泥颗粒减少,后期产生的凝胶产物不足以填充损伤裂隙,内部结构颗粒之间联系较差,故损伤对其后期抗压强度弱化作用显著。研究结果可为矿山充填体工作提供指导意义。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号