首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
金属工艺   5篇
一般工业技术   5篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有10条查询结果,搜索用时 14 毫秒
1
1.
针对钛合金在实际应用过程中存在硬度低、耐磨性差、高温易氧化以及生物活性低等问题,国内外学者利用陶瓷材料较高的硬度、优异的耐磨性和高温抗氧化性能的特点,以及激光熔覆技术可以实现涂层与基材的冶金结合,较高的冷却速率使涂层内部晶粒得到细化的优势,开展了钛合金表面激光熔覆陶瓷涂层的广泛研究。首先简要概括了钛合金表面激光熔覆陶瓷材料的特点,介绍了在激光熔覆过程中常见的陶瓷材料以及所具备的特殊性能。从陶瓷涂层制备方式和陶瓷材料体现的功能两个方面,综述了国内外的研究特点、现状和进展。对比分析了激光制备纯陶瓷涂层、激光制备陶瓷与金属合金复合涂层、激光原位合成陶瓷复合涂层、激光制备陶瓷梯度涂层的优缺点。介绍了在钛合金表面激光熔覆耐磨涂层、高温抗氧化涂层、耐蚀涂层和生物涂层的进展,分析了陶瓷材料在提高相关性能时所发挥的作用。最后针对钛合金表面激光熔覆陶瓷材料存在的问题,对钛合金表面激光熔覆陶瓷涂层未来的发展趋势进行了讨论与展望。  相似文献   
2.
激光熔覆Ni基涂层研究进展   总被引:2,自引:1,他引:1  
综述了激光熔覆Ni基涂层在改善材料的耐磨,润滑,耐腐蚀性能等方面的研究进展,提出了专用粉末的研制,裂纹和气孔的控制是目前激光熔覆Ni基涂层面临的主要问题,并针对上述问题论述了相应的解决方法。  相似文献   
3.
目前有关NiCrMo合金涂层的高温摩擦学行为和机理研究鲜有报道.为此,利用激光熔覆技术制备了NiCrMo涂层,以研究较广泛、应用较深入的NiCrBSi合金涂层作为对照,通过X射线衍射仪、扫描电镜和Raman光谱仪对涂层的物相组成、微观结构和磨痕形貌、成分进行分析,研究了室温~800℃下2种镍基合金涂层的主要磨损机理.结果 表明:NiCrMo合金涂层的微观结构主要由单一的γ-Ni固溶体形成的细小树枝晶组成.NiCrBSi合金涂层中较多含量的B、Si和C小原子主要以Cr7C3硬质相和Ni-B-Si共晶组织的形式分布于γ-Ni固溶体中.在室温~400℃时,NiCrMo合金涂层发生严重的磨粒磨损和塑性变形,NiCrBSi合金涂层具有更高的显微硬度和抗塑性变形能力,因而表现出更优异的耐磨性.当温度超过400℃时,Cr7C3硬质相和Fe2O3的疲劳脱落形成的硬质颗粒加剧了对氧化膜的切削破坏,导致NiCrBSi合金涂层在高温条件下发生严重的磨粒磨损,而NiCrMo合金涂层磨痕表面大量的金属氧化物以及NiMoO4复合物能够形成连续致密的氧化釉质层起到减摩抗磨的作用,因此具有更好的高温耐磨性.  相似文献   
4.
为降低球墨铸铁激光熔覆过程中白口组织的含量,改善其高温摩擦学性能和耐腐蚀性能,采用激光熔覆技术,通过添加 Ni 基过渡层在球墨铸铁表面制备 Co 基涂层。利用 XRD、SEM、EDS 表征不同熔覆层的物相组成、微观结构。采用高温摩擦磨损试验机测试不同温度下 Co 基涂层与球墨铸铁的摩擦磨损性能,分析 Co 基涂层在不同温度下的磨损机理。利用电化学工作站测试 Co 基涂层与球墨铸铁的耐腐蚀性能。结果表明:Ni 基过渡层的物相为 γ-Ni 固溶体和 Ni3Si 陶瓷相。Co 基涂层主要由 γ-Co 固溶体和 Cr7C3陶瓷相构成。Ni 基过渡层的添加抑制了基材中 C 元素扩散,降低了结合界面处白口化趋势。由于 Cr7C3陶瓷相的强化作用,Co 基涂层的显微硬度为球墨铸铁基材的 2.1 倍。与球墨铸铁基材相比,当温度高于 200 ℃时, Co 基涂层在与 Si3N4配副对磨时表现出较低的平均摩擦因数与磨损率。在中低温条件下 Co 基涂层与 Si3N4 配副对磨时的磨损机制为黏着磨损与磨粒磨损,高温条件下的磨损机制为形成连续光滑的氧化层起到减摩抗磨的作用。Co 基涂层表现出更高的自腐蚀电位(?362.36 mV)和更低的自腐蚀电流密度(13.95 nA·cm?2 )。所制备的 Ni-Co 复合涂层能有效提高球墨铸铁表面的高温摩擦学性能和耐腐蚀性能,在发动机领域具有较好的应用前景。  相似文献   
5.
目的通过对镁合金表面进行激光强化处理,改善医用AZ91D镁合金在模拟体液中的耐腐蚀性能。方法采用不同脉宽的Nd:YAG脉冲激光对医用AZ91D镁合金表面进行处理,激光能量密度分别为28、23、18 J/mm~2,对激光处理后镁合金强化层的组成、显微结构、厚度、元素分布以及耐腐蚀性能等进行测试和分析。结果 AZ91D经过激光强化处理后形成致密的强化层,强化层中相的组成与基材相的组成相同,均由α-Mg和β-Mg_(17)Al_(12)组成,强化层的厚度达到300μm。Mg和Mg_(17)Al_(12)的X射线衍射峰均向低角度偏移(约0.2°),且镁合金表面晶粒均得到细化,β相的大小从平均55.705μm减小到平均6.447μm。EDS分析表明,经过激光处理后,Mg的质量分数由82.88%减少为70.13%,Al的质量分数由16.28%增加为28.08%,且Al的分布更均匀。激光处理后,镁合金在模拟体液中的电化学测试结果表明,镁合金的腐蚀电位从原来的-1274mV增加到-1215 mV,腐蚀电流密度从8.920×10~(-5) A/cm~2减小为8.826×10~(-6) A/cm~2,同时,阻抗也从原来的1000Ω增加到60 000Ω,可知激光强化镁合金的耐腐蚀性能较原始镁合金的耐腐蚀性能均有一定程度的改善。结论医用AZ91D镁合金在不同脉宽的Nd:YAG脉冲激光处理后,表面晶粒得到了细化,强化层中富集Al,在模拟体液中的耐腐蚀性能得到改善。  相似文献   
6.
为了明确Ti-6A1—4V合金在空间环境下的摩擦磨损失效行为,本文利用中科院兰州化学物理研究所自主研发的空间摩擦学试验系统对Ti-6A1—4V在三种模拟空间环境(高真空、原子氧和紫外辐照)下的摩擦磨损性能进行了系统的研究。采用SEM和EDS对磨损后Ti-6A1—4V和对偶GCrl5钢球的形貌和元素面分布进行了分析,揭示了Ti-6A1—4V在模拟空间环境下摩擦磨损失效机理。用XPS分析Ti-6A1—4V在原子氧辐照后表面元素价态的变化。结果表明:Ti-6A1—4V在大气条件下的摩擦磨损机理为磨粒磨损和粘着磨损;在高真空、原子氧和紫外辐照模拟空间环境下的磨损机理为较严重的粘着磨损、磨粒磨损和塑性变形;相比于大气条件下,Ti-6A1—4V在高真空、原子氧和紫外辐照条件下的粘着磨损加剧,摩擦因数增加;Ti-6A1—4V在原子氧辐照后表面发生了氧化。  相似文献   
7.
为了使激光熔覆镍基耐磨涂层得到更广泛的应用,通过激光熔覆技术在1Cr18Ni9Ti不锈钢表面制备了NiCrBSi/WC-Co镍基涂层,研究了WC-Co添加量对涂层微观结构及摩擦学性能的影响。结果表明:随WC-Co添加量的增加,镍基涂层的结构由枝晶和枝晶间的共晶逐渐向球状晶和块状晶转变,涂层的硬度和耐磨性增加。  相似文献   
8.
通过激光技术合成单Ni3Al相金属间化合物,利用电化学方法及盐雾试验研究了Ni3Al金属间化合物在Na Cl溶液中的腐蚀行为特征、耐腐蚀性能及腐蚀机理。结果表明:激光合成Ni3Al金属间化合物在不同浓度的Na Cl腐蚀介质中均能形成保护性钝化膜,当Na Cl溶液浓度低于2%时,钝化膜具有良好的稳定性和耐腐蚀性能。当Na Cl溶液浓度高于3.5%时,钝化膜产生活化溶解,稳定性下降,Ni3Al金属间化合物表面形成点蚀坑,并且随腐蚀介质浓度增大,腐蚀加剧。Ni3Al金属间化合物表面点蚀坑边缘规整、腐蚀界限清晰,腐蚀机制为典型的晶内腐蚀,腐蚀过程中未形成应力腐蚀微裂纹等破坏性缺陷,具备在沿海湿热盐雾环境下使用的潜在价值。  相似文献   
9.
目的探究不同配比的B、Si元素对铁基非晶涂层非晶形成能力的影响,确定B、Si元素的最佳配比。方法通过对B、Si元素配比进行优化,采用激光熔覆技术制备组织均匀、性能优良的铁基非晶涂层,利用X射线衍射仪、扫描电子显微镜、能谱分析仪、显微硬度计、纳米压痕仪与摩擦试验机对涂层的结构物相、微观形貌、力学性能及其摩擦学性能进行分析测试,研究B、Si元素对铁基非晶涂层组织结构与摩擦学性能的影响。结果 B、Si元素的原子数分数均达到10%时,涂层的非晶含量最高,由不含B、Si元素时的15%提升至47%,涂层由非晶相、铁基固溶体和铁铬钼的金属间化合物组成。涂层厚度在400μm左右,显微维氏硬度达到1400HV0.2。在往复摩擦条件下,涂层的摩擦系数稳定在0.45,磨损率为2.28×10–6 mm3/(N·m),耐磨性能优良。结论在激光熔覆Fe Cr MoBSi非晶涂层时,当B、Si元素的原子数分数均为10%时,B、Si小原子尺寸元素可以阻碍铁基非晶涂层中FeCrMo金属间化合物的形成,有效提高其非晶形成能力,进一步提高涂层的硬度和摩擦学性能。  相似文献   
10.
中子准直器在中国散裂中子源(CSNS)的谱仪上起着限制束流截面与发散度的作用,准直器的结构设计中通过在中子飞行管上间隔设置B4C阻挡块可以起到阻挡、吸收屏蔽杂散中子的作用,为此研制了粘结碳化硼中子阻挡块,并对其成型工艺进行了研究,确定了成型最佳粉体尺寸、粘结剂含量和固化温度.对该中子屏蔽材料的中子衰减系数计算结果表明,波长为0.1×10-10、1×10-10和15×10-10m中子通过该材料的线性衰减系数分别为3.42、30.4和449.9 cm-1.力学冲击和热重实验结果也表明该材料符合在CSNS谱仪中子束线屏蔽使用中的性能要求.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号