首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
综合类   1篇
化学工业   1篇
金属工艺   2篇
无线电   1篇
一般工业技术   3篇
冶金工业   3篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2013年   3篇
  2011年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
利用稀土Ln=Y/Yb对Sm_2Zr_2O_7进行A位取代掺杂,通过固相合成法制得Sm1.8Ln0.2Zr2O7(Ln=Y/Yb)陶瓷材料。分别利用XRD分析材料的晶体结构,SEM观察其显微形貌,激光导热仪测试其热扩散系数并计算得到热导率。结果表明,Sm1.8Ln0.2Zr2O7(Ln=Y/Yb)陶瓷材料为立方烧绿石结构,晶粒分布均匀,Yb~(3+)/Y~(3+)的掺杂降低了陶瓷材料的热扩散系数和热导率,其中Yb的作用更为明显。  相似文献   
2.
钢渣作为冶金产业的主要固体废弃物,由于其产量大、稳定性差等特点,导致我国整体利用率处于较低水平。介绍了包钢热闷钢渣的组成成分,阐述目前国内主要的处理工艺及优缺点,以及不同的处理条件下,钢渣的成分差异、使用率及主要应用厂家。结合钢渣的矿相、物理性质详细阐述了国内外钢渣的利用现状和使用途径,主要包括企业内部循环和企业外部循环两种方式,企业内部循环主要包括用于回收废钢铁和用作烧结材料方面,企业外部循环主要包括筑路施工和建筑、农业肥料生产及土壤改良、混凝土、烟气脱硫、吸收二氧化碳、功能材料等相关领域。另外,针对目前钢渣利用的不足之处,展望钢渣未来的发展方向。  相似文献   
3.
近年来,LaNi0.6Fe0.4O3-δ阴极材料在金属连接体下具有优异的抗铬毒化性能备受关注,但其电化学性能相对较低。本文通过Ca2+掺杂LaNi0.6Fe0.4O3-δ(LNF)阴极材料改善电化学性能,实验采用甘氨酸燃烧法制备La1-xCaxNi0.6Fe0.4O3-δ(LCNF)阴极材料,Ca2+掺杂量分别为0.05、0.10、0.15、0.20。应用X-Ray衍射表征材料的物相组成,SEM观察阴极材料的微观结构,XPS分析阴极材料表面元素的化学形态,电化学交流阻抗谱技术分析阴极材料的电化学活性。结果表明,LCNF阴极材料随着Ca2+掺杂量的增加,氧还原反应活化能减小,这一现象与DRT(弛豫时间分布)分析结果相吻合。LCNF(x=0.20)阴极材料在750℃具有最小的极化阻抗(0.88Ωcm2),与LNF阴极材料相比表现出更加优异的氧催化活性,使LCNF阴极材料在IT-SOFC具有更加广阔的应用前景。  相似文献   
4.
采用固相反应法制备了中温固体氧化物燃料电池阴极材料Sm0.5-xGdxSr0.5CoO3-δ(SGSC),用溶胶-凝胶法制备了Ce0.9Gd0.1O1.95(GDC)电解质粉体。用X射线衍射仪、热膨胀仪及交流阻抗谱法分别对SGSC材料的结构、化学稳定性、热膨胀性质及SGSC/30%GDC阴极的电化学性能进行了研究。结果表明,经1100℃焙烧6 h的SGSC粉体均形成单相正交钙钛矿结构,SGSC与GDC电解质在高温下具有良好的化学相容性。随着Gd3+含量的增加,材料的热膨胀系数无规律性变化,极化电阻先减小后增加,在x=0.15时,以SGSC/30%GDC为复合阴极的极化电阻最小,750℃时,Rp=0.03Ω.cm2。  相似文献   
5.
以LaNi0.6Fe0.4O3-δ(LNF)为致密扩散层材料,以8YSZ(8mol% Y2O3+ ZrO2)和Ce0.9Gd0.1O1.95(GDC)为固体电解质材料,采用共压-共烧法制备了双层电解质型致密扩散障极限电流氧传感器,研究了氧含量和温度对氧传感器氧敏性能的影响.实验结果表明:氧传感器在800~820℃温度范围,氧含量在0.3%~1.2%气氛下,显示出良好的极限电流平台,氧传感器的响应时间和恢复时间分别约为35 s和45 s.极限电流与氧浓度ψ(O2)之间存在较好的线性关系,并且氧传感器log(IL·T)-1/T曲线线性相关.  相似文献   
6.
开发性能优良的阴极材料是降低中低温(500~800℃)固体氧化物燃料电池(IT-SOFCs)成本的关键.回顾了IT-SOFCs阴极材料的最新研究进展.阴极材料对高电子电导率的需要,使钙钛矿结构氧化物及类钙钛矿结构氧化物在该领域的研究占据主导地位.除了电子电导率外,阴极材料的研究正在转向具有高离子电导率的组分,这种要求使具有无序自由氧离子迁移通道的双钙钛矿结构氧化物和在间隙位置可引入过量氧的K2NiF4结构及其它间隙氧化物最近受到极大的重视.  相似文献   
7.
作为一种高效的能源转换装置,固体氧化物燃料电池(SOFC)因具有高效率、环境友好和燃料灵活等优点受到广泛关注.电解质作为SOFC的核心部分,其性能的好坏直接决定SOFC的性能.SOFC使用的传统电解质材料是部分氧化钇稳定的氧化锆(YSZ),但因其工作温度高(约1000℃),由此带来电极材料的选择、密封等诸多困难.因此,开发适用于中低温下的电解质对推进SOFC的商业化进程至关重要.单元素掺杂的氧化铈基电解质在中低温下的电导率高于同温度下YSZ的电导率.然而,CeO2基电解质也存在以下不足:在低氧分压下,部分Ce4+被还原为Ce3+而产生电子电导;在中低温度下,晶界电阻较大而使总电导率降低.影响CeO2基电解质电导率的因素较多,如粉体的制备方法、烧结体的微观形貌、掺杂剂的种类和浓度.其中,较为重要的影响因素是掺杂剂的种类及其浓度、粉体的制备方法.针对以上问题,研究人员普遍认为,相比于单掺杂CeO2,元素共掺或多掺(尤其掺杂稀土元素)更有利于改善电解质的离子电导率,并降低电子电导率.掺杂元素的种类通常包括:稀土元素和部分碱土金属元素.除元素掺杂外,不同碳酸盐复合的CeO2基电解质也引起了研究人员的兴趣.在制备方法上,采用微波烧结、多元醇法、静电纺丝等不同粉体制备方法可得到高离子电导率的电解质,此外,将电解质薄膜化或采用脉冲激光沉积(PLD)在CeO2电解质基底上沉积一层隔膜都可以降低电子电导,提高电导率.本文结合最近几年学者们对CeO2基电解质的研究状况,简述了元素掺杂、粉体的制备方法以及电解质薄膜对CeO2基电解质电性能的影响,并对其发展进行了展望.  相似文献   
8.
采用溶胶-凝胶法制备铈基固体电解质粉体Ce_(0.8)Sm_(0.15-x)Ndx Ca_(0.05)O_(2-δ)。粉体经干压成型后,于空气气氛下1300℃烧结5 h得到陶瓷试样。通过X-射线衍射仪(XRD)、拉曼光谱仪(Raman)、X射线光电子能谱仪(XPS)、紫外-吸收光谱仪(UV-Vis)、扫描电子显微镜(SEM)和交流阻抗(AC)等技术分别对样品的结构、表面化学状态、禁带宽度、微观形貌及电性能进行表征测试及分析。研究结果表明:经800℃焙烧后合成了具有单一立方萤石结构的电解质粉体。经1300℃常规烧结的陶瓷样品断面致密,相对密度均大于95%。由Raman、XPS等半定量分析粉体样品结果表明,其组成为Ce_(0.8)Sm_(0.10)Nd_(0.05)Ca_(0.05)O_(1.875)时电解质的氧空位浓度最大;通过外推的线性拟合曲线得到禁带宽度值最小为2.58 eV;陶瓷样品在700℃时电导率最大为2.24×10^(-2) S/cm,活化能值最低为0.936 eV。  相似文献   
9.
针对常规方法无法制备出一种形状复杂及壁薄的铁基合金部件,本研究以氧化物为主要原料,以高密度聚乙烯(HDPE)、聚乙烯-乙烯乙酸乙脂共聚物(EVA)、石蜡(PW)及硬脂酸(SA)为粘结剂,研究了注射成形用喂料的最佳粘结剂的组成及最佳固含量。在此基础上,研究了正庚烷脱脂的最佳工艺,及热脱脂气氛对制品中碳氧含量的影响规律。研究结果表明,粘结剂组成为15%HDPE-75%PW-8%EVA-2%SA且最佳固含量为50%的喂料具有流动性好、注射坯强度高的特点。正庚烷脱脂的最佳工艺条件为40℃下脱脂80 min。热脱脂的气氛对最终制品中的碳、氧含量有影响,氢气气氛下脱脂时,碳含量高,氧含量低,氩气气氛下相反。氢气还原后的制品结构为铁相,且密度较高。  相似文献   
10.
利用溶胶-凝胶法制备了La0.7Sr0.3Cr0.5Mn0.5O3-δ(LSCM)阳极粉体。X射线衍射(XRD)分析结果显示,在1000℃下焙烧4 h处理后,粉体为单一的钙钛矿相结构。应用单向压力成型方法、空气中1450℃下烧结8 h制备了Ce0.8Sm0.2O1.9(SDC)为电解质片,应用丝网印刷方法在SDC电解质两侧分别涂覆La0.7Sr0.3Cr0.5Mn0.5O3-δ阳极和Pr0.6Sr0.4Co0.8Fe0.2O3-δ-SDC(PSCF-SDC)复合阴极,组成电解质支撑型固体氧化物燃料单电池。扫描电镜(SEM)观察显示,制备的电解质致密,阳极和阴极孔隙大小分布均匀,阳极厚度约为20μm,阴极厚度为10μm。用湿氢气作燃料,在800℃下获得的最大输出功率为232.84 mW/cm2,短路电流为919.84 mA/cm2。为了提高LSCM阳极材料催化活性,阳极中掺入少量SDC构成复合阳极。La0.7Sr0.3Cr0.5Mn0.5O3-δ-10%SDC复合阳极的单电池输出功率明显提高,最大输出功率为340 mW/cm2。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号