首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3766篇
  免费   232篇
  国内免费   32篇
电工技术   54篇
综合类   22篇
化学工业   1022篇
金属工艺   75篇
机械仪表   141篇
建筑科学   127篇
矿业工程   4篇
能源动力   265篇
轻工业   435篇
水利工程   65篇
石油天然气   41篇
武器工业   2篇
无线电   374篇
一般工业技术   730篇
冶金工业   134篇
原子能技术   15篇
自动化技术   524篇
  2024年   9篇
  2023年   80篇
  2022年   148篇
  2021年   270篇
  2020年   187篇
  2019年   217篇
  2018年   254篇
  2017年   205篇
  2016年   248篇
  2015年   154篇
  2014年   216篇
  2013年   378篇
  2012年   274篇
  2011年   302篇
  2010年   188篇
  2009年   158篇
  2008年   127篇
  2007年   89篇
  2006年   74篇
  2005年   55篇
  2004年   42篇
  2003年   41篇
  2002年   28篇
  2001年   36篇
  2000年   25篇
  1999年   13篇
  1998年   29篇
  1997年   17篇
  1996年   20篇
  1995年   25篇
  1994年   21篇
  1993年   9篇
  1992年   6篇
  1991年   5篇
  1990年   10篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   9篇
  1985年   8篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有4030条查询结果,搜索用时 296 毫秒
1.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
2.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
3.
4.
5.
A simple, cost-effective, and novel chemical sensor for ammonia (NH3) gas detection was developed from polyaniline (PANI)/quail eggshell (QES) composites. QES is a natural waste enriched in calcium carbonate. In this work, pure PANI was synthesized from chemical oxidation method and PANI/QES composites were prepared from physical mixing of QES with the synthesized PANI at different mass ratio. A series of complementary techniques including Fourier transform infrared and ultraviolet-visible spectrometers, scanning electron microscope with energy dispersive detection coupled with mapping, thermogravimetric analysis, and X-ray diffractometer were used to characterize the physicochemical and textural properties of the biocomposites. From the results, PANI/QES composite with a mass ratio of 1 exhibited the lowest NH3 detection limit of 5.24 ppm with a linear correlation coefficient (R2) of close to unity (0.9932) between the signal and NH3 gas concentration. As a whole, the PANI/QES biocomposites synthesized from this work exhibited excellent selectivity toward NH3 gas even in the presence of other gas impurities, such as acetone, ethanol, and hexane. For the sensor reusability, the PANI/QES biocomposites can be reused in the application of NH3 gas detection for at least 4 cycles.  相似文献   
6.
Abnormal activation of Toll-like receptor (TLRs) signaling can result in colon cancer development. The aim of this study was to investigate the expression of important TLRs in different histological types of colorectal polyps and evaluate their relationship with intestinal microbiota. The expression levels of TLR2, 3, 4, and 5 were analyzed in intestinal biopsy specimens of 21 hyperplastic polyp (HP), 16 sessile serrated adenoma (SSA), 29 tubular adenoma (TA), 21 villous/tubulovillous (VP/TVP) cases, and 31 normal controls. In addition, selected gut bacteria including Streptococcus bovis, Enterococcus faecalis, Enterotoxigenic Bacteroides fragilis (ETBF), Fusobacterium nucleatum, Porphyromonas spp., Lactobacillus spp., Roseburia spp., and Bifidobacterium spp. were quantified in fecal samples using absolute qRT PCR, and, finally, the association between TLRs and these gut microbiota- was evaluated by Spearman’s correlation coefficient. Higher expression of TLR2 and TLR4 in VP/TVP and TA, and lower expression levels of TLR3 and TLR5 in all type of polyps were observed. The differences in TLR expression patterns was not only dependent on the histology, location, size, and dysplasia grade of polyps but also related to the intestinal microbiota patterns. TLR2 and TLR4 expression was directly associated with the F. nucleatum, E. faecalis, S. bovis, Porphyromonas, and inversely to Bifidobacterium, Lactobacillus, and Roseburia quantity. Furthermore, TLR3 and TLR5 expression was directly associated with Bifidobacterium, Roseburia, and Lactobacillus quantity. Our results suggest a possible critical role of TLRs during colorectal polyp progression. An abnormal regulation of TLRs in relation to gut microbial quantity may contribute to carcinogenesis.  相似文献   
7.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
8.
In this work, the sintering behaviour of fluorapatite (FAp)–silicate composites prepared by mixing variable amounts of natural quartz (2.5 wt% to 20 wt%) and FAp was studied. The composites were pressureless sintered in air at temperatures from 1000 °C to 1350 °C. The effects of temperatures on the densification, phase formation, chemical bonding and Vickers hardness of the composites were evaluated. All the samples exhibited mixed phase, comprising FAp and francolite as the major constituents along with some minor phases of cristobalite, wollastonite, dicalcium silicate and/or whitlockite dependent on the quartz content and sintering temperature. The composite containing 2.5 wt% quartz exhibited the best sintering properties. The highest bulk density of 3 g/cm3 and a Vickers hardness of >4.2 GPa were obtained for the 2.5 wt% quartz–FAp composite when sintered at 1100 °C. The addition of quartz was found to alter the microstructure of the composites, where it exhibited a rod-like morphology when sintered at 1000 °C and a regular rounded grain structure when sintered at 1350 °C. A wetted grain surface was observed for composites containing high quartz content and was believed to be associated with a transient liquid phase sintering.  相似文献   
9.
Ahmad  Bilal  Jian  Wang  Enam  Rabia Noor  Abbas  Ali 《Wireless Personal Communications》2021,118(2):1055-1073

As per the most recent literature, Orthogonal Frequency Division Multiplexing (OFDM), a multi access technique, is considered most suitable for the 3G, 4G and 5G techniques in high speed wireless communication. What made OFDM most popular is its ability to deliver high bandwidth efficiency and superior data rate. Besides it, high value of peak to average power ratio (PAPR) and Inter Carrier Interference (ICI) are the challenges to tackle down via appropriate mitigation scheme. As a research contribution in the present work, an improved self-cancellation (SC) technique is designed and simulated through Simulink to mitigate the effect of ICI. This novel proposed technique (Improved SC) is designed over discrete wavelet transform (DWT) based OFDM and compared with conventional SC scheme over different channel conditions i.e. AWGN and Rayleigh fading environments. It is found that proposed DWT-OFDM with Improved SC scheme outperforms conventional SC technique significantly, under both AWGN and Rayleigh channel conditions. Further, in order to justify the novelty in the research contribution, a Split-DWT based Simulink model for Improved SC scheme is investigated to analyse the BER performance. This Split-DWT based Simulink model presented here foretells the future research potential in wavelet hybridization of OFDM to side-line ICI effects more efficiently.

  相似文献   
10.
Neural Computing and Applications - Texture analysis is devised to address the weakness of color-based image segmentation models by considering the statistical and spatial relations among the group...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号