首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
综合类   2篇
化学工业   2篇
金属工艺   4篇
机械仪表   2篇
一般工业技术   4篇
冶金工业   4篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
采用热压法制备了10%(质量分数)TiC/4.7%(质量分数)Mo增强B4C基陶瓷,分析了烧结温度、保温时间和烧结压力对力学性能的影响.烧结温度由1 800℃提高到1 900℃时,复合材料的抗弯强度由590MPa提高到705MPa;当烧结温度升至1 950℃,强度反而下降;硬度和韧度随烧结温度升高而提高.在烧结温度为1 900℃压力为35MPa保温时间由15min提高到45min时,抗弯强度由600MPa提高到705MPa;进一步增加保温时间,抗弯强度随保温时间的增加而下降;硬度和韧度随保温时间延长而提高.烧结压力对复合材料力学性能的影响较小.当烧结参数为1 900℃、45min、35MPa,B4C/TiC/Mo陶瓷复合材料抗弯强度、硬度、断裂韧度、相对密度分别为705MPa、20.6GPa、3.82MPa·m1/2、98.2%.  相似文献   
2.
研究了透辉石/AlTiB增韧补强Al2O3基陶瓷材料的无压烧结致密化过程,通过绘制lg(ΔL/L0)-lgt图,用最小二乘法计算了透辉石/AlTiB增韧补强Al2O3基陶瓷材料的表观激活能.计算结果表明:纯Al2O3致密化机制为扩散机制控制;透辉石/AlTiB增韧补强Al2O3基陶瓷材料在烧结初期的致密化机制为液相流动和颗粒重排,在中、后期致密化机制转为扩散机制控制.根据烧结温度和保温时间对复合材料线收缩率的影响,建立了透辉石/AlTiB增韧补强Al2O3基陶瓷材料的烧结动力学方程;纯Al2O3陶瓷材料的烧结特征指数n约为2.5,其烧结过程中的物质迁移机制由体扩散控制;透辉石/AlTiB增韧补强Al2O3基陶瓷材料的烧结特征指数n值介于2.5与3.0之间,其在烧结中、后期的物质迁移机制既有体扩散,也有晶界扩散.  相似文献   
3.
讨论了制备碳化硼涂层的主要方法,指出了各种制备方法的优缺点。探讨了评估碳化硼涂层的新方法,总结了改善碳化硼涂层的途径。  相似文献   
4.
孙军龙  邓建新  刘长霞 《材料导报》2005,19(Z2):401-403
碳化硼陶瓷具有极高的硬度,然而其低韧性、低抗弯强度、难以致密化限制了它的广泛应用.已有一些研究集中于碳化硼陶瓷增韧补强和致密化,对这一方面国内外研究进展进行了归纳与评述,阐明各种增韧补强和致密化方法的优缺点,提出碳化硼陶瓷增韧补强和致密化研究值得发展的一些方向.  相似文献   
5.
B4C/TiC/Mo陶瓷复合材料的力学性能和微观结构   总被引:3,自引:0,他引:3  
采用热压法制备了B4C/TiC/Mo陶瓷复合材料,分析了烧结工艺和TiC含量对B4C/TiC/Mo陶瓷复合材料力学性能和显微结构的影响.当烧结参数为1900℃,45min,35MPa时,85.3%(质量分数,下同)B4C/10%TiC/4.7%Mo陶瓷复合材料的抗弯强度、韧性、硬度和相对密度分别为705MPa,3.82MPa·m1/2,20.6GPa,98.2%.添加的TiC在烧结过程中与B4C发生化学反应生成了TiB2,利用生成的TiB2与添加的Mo协同增韧补强B4C/TiC/Mo陶瓷复合材料.  相似文献   
6.
采用热压法制备了B4C/TiO2/Al复合陶瓷材料,试验结果表明,TiO2和Al的加入,使得B4C/TiO2/Al复合材料的硬度、抗弯强度和断裂韧性比纯B4C陶瓷材料有较大程度的提高;而且,添加相促进了复合材料的烧结.利用热力学和X射线衍射分析研究烧结过程中的化学反应,分析结果表明,复合材料中没有发现TiO2,Al,Al2O3;同时在复合材料中出现了TiB2,因为在热压过程中TiO2-B4C反应生成TiB2.分析了B4C/TiO2/Al复合陶瓷材料的微观结构和增韧机理.  相似文献   
7.
B4C/Al2O3/TiC复合陶瓷的力学性能和微观结构   总被引:1,自引:0,他引:1  
利用热压烧结工艺成功制备了B4C/Al2O3/TiC复合陶瓷.探讨了TiC含量对B4C/Al2O3/TiC复合陶瓷力学性能和显微结构的影响,并研究了B4C/Al2O3/TiC复合陶瓷的增韧机制.结果表明,在烧结过程中B4C与TiC发生原位反应,生成了TiB2.发生原位反应有效的降低了B4C/Al2O3复合陶瓷的致密化烧结温度;B4C/Al2O3复合陶瓷烧结温度为2150℃,B4C/Al2O3/TiC复合陶瓷的烧结温度为1900℃.而且,原位反应提高了B4C/Al2O3/TiC复合陶瓷相对密度和力学性能.裂纹偏转和裂纹钉扎是B4C/Al2O3/TiC复合材料主要增韧机制.  相似文献   
8.
将透辉石和AlTiB中间合金添加到Al_2O_3基体中,采用无压烧结工艺制备了透辉石/AlTiB增韧补强Al_2O_3基陶瓷材料,建立了保温时间对Al_2O_3/透辉石/AlTiB复合陶瓷相对密度影响的预测模型,研究了无压烧结温度和保温时间对透辉石/AlTiB增韧补强Al_2O_3基陶瓷材料力学性能和微观结构的影响.结果表明,所建立的模型较好的预测了保温时间对Al_2O_3/透辉石/AlTiB复合陶瓷相对密度的影响趋势,Al_2O_3/透辉石/AlTiB复合陶瓷最佳烧结工艺为烧结温度1520℃和保温时间180min;烧结工艺对Al_2O_3/透辉石/AlTiB复合陶瓷材料气孔率、晶粒间结合强度、粒径大小和断裂机制等因素产生较大的影响,并由此影响材料的相对密度和力学性能.  相似文献   
9.
利用原位反应热压工艺制备了B4C/Al2O3基复合陶瓷,研究了TiB2含量和烧结温度对B4C/Al2O3基复合陶瓷力学性能和微观结构的影响.结果表明,当TiB2含量低于8.7%时,随原位反应生成的TiB2含量的增加,有效的促进了B4C/Al2O3/TiB2复合陶瓷的烧结,提高相对密度,改善了力学性能.当烧结温度低于1900℃时,其力学性能随烧结温度增加而提高;当超过1900℃时,其力学性能随烧结温度的提高而降低.在1900℃,60 min时,B4C/Al2O3/TiB2复合陶瓷获得最佳综合力学性能,其硬度、断裂韧性和抗弯强度分别为24.8 GPa、4.82 MPa·m1/2和445.2 MPa.  相似文献   
10.
Al2O3/TiC/CaF2自润滑陶瓷材料的研究   总被引:1,自引:0,他引:1  
采用热压工艺制备了Al2O3/TiC/CaF2自润滑陶瓷材料,测量了其力学性能.结果表明,当CaF2含量为10%(质量分数,下同)时,Al2O3/TiC/CaF2自润滑陶瓷材料的强度和硬度最高,分别达到了589MPa和HV1537.其微观结构显示,Al2O3/TiC/CaF2自润滑陶瓷材料的晶粒大小均匀,基体组织成网状结构,有利于提高材料的强度.对Al2O3/TiC/CaF2自润滑陶瓷材料室温干摩擦下的摩擦磨损行为进行了研究,当CaF2含量为10%时,摩擦系数最低,约为0.28左右,CaF2含量为15%的陶瓷反而具有较大的摩擦系数,达到了0.32左右.研究表明,Al2O3/TiC/CaF2自润滑陶瓷材料能形成有效的减磨层,从而显著降低摩擦系数和磨损因子,具有一定的自润滑性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号