首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   3篇
综合类   1篇
建筑科学   3篇
水利工程   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
由于应力重分布和开挖扰动等因素,对于地下洞室开挖面附近的岩体,其力学特性会有一定程度的劣化,称之为岩体力学参数的开挖损伤效应、本文结合正交试验设计、粒子群优化算法、支持向量机模型等原理,建立了考虑开挖损伤效应的LSSVM-PSO反分析模型;以某水电站地下厂房为例,针对现场变形监测成果进行了位移反演分析,得到了损伤区范围...  相似文献   
2.
岩石统一能量屈服准则   总被引:1,自引:0,他引:1  
不同于金属材料,岩石材料由于具有内摩擦特性而表现出明显的Lode角效应等特点,其屈服过程不仅与广义剪应力有关,还受静水压力的影响。为建立适用范围更广、更符合岩石屈服机制的屈服准则,开展如下主要工作:综合考虑岩石材料屈服时的剪切滑移和法向压密机制,将与屈服相关的能量划分为3个复合滑动面的剪切应变能之和与体积应变能,并给出相应的计算公式;几种不同性质的岩石试验结果表明,岩石屈服时的2种能量近似符合线性关系,基于此,建立岩石统一能量屈服准则,总体上它可较好地描述岩石材料的屈服特性,如子午面上的曲线形态、Lode角效应等;通过对常用的岩石屈服准则进行对比分析,指出统一能量屈服准则是多种常用岩石屈服准则的一般形式;分别采用统一能量屈服准则、三剪能量屈服准则、Mohr-Coulomb屈服准则、Drucker-Prager屈服准则、双剪强度理论、Hoek-Brown准则和Murrell准则对3种不同性质岩石的屈服强度进行计算,结果表明统一能量屈服准则的计算结果比较精确(尤其是在高围压和高静水压力条件下),并且分析统一能量屈服准则产生上述结果的本质机制,探讨岩石材料屈服时剪切应变能为定值的传统假设近似成立的条件。所建立的岩石统一能量屈服准则突破了岩石材料屈服时剪切应变能为定值的传统假设,通过分析体积应变能对岩石屈服的影响规律,在屈服准则中合理地考虑体积应变能的影响因素,这对于准确地定量分析岩石材料的屈服特性具有重要意义。  相似文献   
3.
 加载速率效应是岩石材料力学特征的一个重要性质。通过对锦屏II级水电站硬脆性大理岩T2b开展单轴抗拉强度特性的加载速率效应试验,获得以下5点试验规律:(1) 在巴西圆盘劈裂试验中,岩样的破坏过程基本可以归纳为应力集中区出现、应力集中区扩展、破坏面形成和岩样破坏4个阶段;(2) 岩样的峰值抗拉强度随着加载速率的提高而呈对数增大;(3) 应力峰值对应的平均垂直应变随着加载速率的增大而增大,而平均侧向应变随着加载速率的增大而减小;(4) 对岩样电镜扫描图进行断口学分析表明,在较低的加载速率(0.000 255 MPa/s)下,岩样的破坏面中张拉破坏区域(即镜面区)所占的比例较大,剪切破坏区域(即锯齿区)所占的比例较小,且锯齿区分布均匀规则,而在较高的加载速率(2.55 MPa/s)下,岩样的断口中镜面区比例较小,锯齿区所占的比例较大,且锯齿区剪切脆断痕迹明显;(5) 在0.000 255 MPa/s的加载速率下,岩样一般劈裂成2块,岩石破坏所消耗的能量较小,而在2.55 MPa/s的加载速率下,岩样破碎成多块,岩样破坏所消耗的能量较大。本文通过宏细观两方面的分析,并引入断口形貌学的分析方法,揭示了硬脆性岩石力学特性加载速率效应的试验特征和内在机制,为岩石破坏机制研究提供一条新的途径。  相似文献   
4.
近几年公路工程发展迅速,在修筑高等级公路时为了保证道路行驶的平稳性和通畅性,出现了很多填土路堤,由于以前该类工程较少,对路堤沉降特性的研究也较少。采用传统的分层总和法计算得到路堤沉降最大位置位于路堤表面,这与实测结果不符;对此法进行改进,在考虑路堤填土分层填筑时间先后顺序特性的基础上,分别推导出了适用于刚性地基和柔性地基的改进分层总和法计算公式。针对一算例,分别采用此改进方法与数值计算方法进行了计算,结果基本一致。表明在评价路堤沉降时,改进分层总和法可作为一种方便快捷的经验方法。  相似文献   
5.
 根据变形等效原则,推导1组结构面单独切割岩体及多组结构面组合切割岩体时,岩体变形模量的理论计算公式。通过引入一种圆形的全空间展示图,结合等值线云图的形式,对节理岩体变形模量进行三维空间全方位展示,为便捷地预测岩体变形模量及其结构效应提供理论依据。在此研究基础上,研究单组结构面单独切割及2,3组结构面任意组合切割岩体时,岩体变形模量的空间分布特征,在全空间展示图上表现为:单组结构面切割时,结构面平行方向变形模量取最大值、表现为一条极值线,结构面垂直方向变形模量取最小值、表现为一极值点;2组结构面切割时,最大值为单独切割时极值线的交点,最小值位于单独切割时极值点的连线上;3组结构面切割时,最大值位于切割时极值线围成的最小三角形内,最小值位于单独切割极值点围成的三角形内。研究还表明,结构面切割组数越多,岩体变形模量的弱化程度越明显。该方法可为三维全空间评价岩体变形模量提供有益的参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号