首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
建筑科学   1篇
能源动力   1篇
  2020年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 3 毫秒
1
1.
模拟斜边布置大平板热源、离散式热源的直角三角形腔内温度分布,对斜边上热源分布数量、斜边与底边的夹角对斜边、竖直边附近努塞尔数的影响进行数值模拟。三角形底边(直角边)绝热,竖直边为低温恒温冷边(以下简称竖直冷边)。斜边设置大平板(热源分布数量为1)、离散式(热源分布数量为2~4)恒温热源,除热源设置位置外,斜边其他位置的温度与竖直冷边一致。将斜边设置热源外的部分称为低温段,将设置热源的部分称为热源段。温度场分布:靠近斜边的空气向上流动,靠近竖直冷边的空气向下流动。大平板热源与离散式热源的热边界层形式与传热规律相似。随着热源分布数量增加,斜边附近空气温度分布更加复杂,斜边的热影响区域有扩大的趋势。随着夹角变化,三角形的几何结构发生变化,三角形内自然对流的范围及强度受到影响,但总体规律基本一致。局部努塞尔数:热源段与低温段交接处附近局部努塞尔数比较大,热源段中间部分附近局部努塞尔数比较小。越接近三角形顶点(斜边与竖直冷边的交点),热源段与低温段交接处附近局部努塞尔数增大。不同热源分布数量的竖直冷边附近局部努塞尔数均呈现先升高后下降的趋势。与斜边距离较远的竖直冷边附近的自然对流传热强度比较弱,与斜边距离较近的竖直冷边附近的自然对流强度比较强,而三角形顶点基本不存在自然对流传热。夹角越小,热源段与低温段交接处附近局部努塞尔数越大,热源段中间部分附近局部努塞尔数越小。不同夹角的竖直冷边附近局部努塞尔数均呈现先升高后下降的趋势。夹角越大,竖直冷边附近局部努塞尔数越大。平均努塞尔数:相同条件下,斜边附近平均努塞尔数高于竖直冷边。热源分布数量一定时,斜边、竖直冷边附近平均努塞尔数均随夹角的增大而增大。夹角一定时,斜边、竖直冷边附近平均努塞尔数均随热源分布数量的增大而增大。夹角为30°、45°时,斜边、竖直冷边附近平均努塞尔数比较接近。热源分布数量越大、夹角越大,三角形内空气自然对流传热越强烈。  相似文献   
2.
采用ANSYS Fluent 17. 0中的标准k-ε湍流模型对高度、深度及宽度比为28. 7∶6. 8∶1,瑞利数分别为0. 86×10~6、1. 10×10~6和1. 43×10~6的高方腔内的空气自然对流传热进行分析研究,结果显示:温度场及速度场在几何上呈现出良好的中心对称结构;随着瑞利数增大,自然对流增强,努塞尔数增大;在冷、热壁面附近区域,温度梯度大,热量传递以导热为主,越靠近中心区域,对流传热占总的传热比例增加;方腔顶部区域,冷板侧的传热相对更强,而在贴近底板区域,热板侧的传热相对更强。分析结果经过与实验结果对比,具有很好的一致性,模拟结果和方法可作为该类问题模拟分析的参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号