首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
建筑科学   5篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.
This study presents the results of full-scale tests and three-dimensional finite element analyses of deep cement mixing (DCM) and stiffened deep cement mixing (SDCM) columns under lateral loads and DCM and SDCM walls under deep excavation in soft clay. The DCM walls used in this study comprised one, two and three rows of DCM columns, whereas the SDCM walls consisted of only one row of DCM columns with steel H-beams inserted in either all DCM columns or in alternating DCM columns. The measured and simulated results are presented in terms of profiles of lateral displacement, settlement and bending moment.  相似文献   
2.
This paper presents a reliability-based settlement analysis of T-shaped deep cement mixing (TDM) pile-supported embankments over soft soils. The uncertainties of the mechanical properties of the in-situ soil, pile, and embankment, and the effect of the pile shape are considered simultaneously. The analyses are performed using Monte Carlo Simulations in combination with an adaptive Kriging (using adaptive sampling algorithm). Individual and system failure probabilities, in terms of the differential and maximum settlements (serviceability limit state (SLS) requirements), are considered. The reliability results for the embankments supported by TDM piles, with various shapes, are compared and discussed together with the results for conventional deep cement mixing pile-supported embankments with equivalent pile volumes. The influences of the inherent variabilities in the material properties (mean and coefficient of variation values) on the reliability of the piled embankments, are also investigated. This study shows that large TDM piles, particularly those with a shape factor of greater than 3, can enhance the reliability of the embankment in terms of SLS requirements, and even avoid unacceptable reliability levels caused by variability in the material properties.  相似文献   
3.
This research aims to clarify and gain an insight into the impact of the length of the stiffened core and the strength of the deep cement mixing (DCM) socket on the behaviors of floating stiffened deep cement mixing (SDCM) columns. The observed behaviors include the axial ultimate bearing capacity, settlement and failure mode. The study begins by conducting a series of physical model tests as a preliminary investigation. The results reveal that the strength of the DCM socket can be reduced to a certain value by inserting a sufficiently long reinforced core to achieve the highest possible load-carrying capacity, indicating an optimum length of the stiffened core for a specific DCM socket strength. For a parametric study on the actual scale condition, full-scale load tests on a floating DCM and an SDCM column with eucalyptus wood as a core in the thick soft clay layer area were carried out to provide a reference case. The extended numerical analysis results suggest that the modes of failure depend on the length of the stiffened core and the strength of the DCM socket. The results from the numerical parametric study were used to establish a guideline chart for suggesting the appropriate length of the core in accordance with the strength of the DCM socket of the floating SDCM columns. The field pile load test results also confirm that core materials with a lower strength and stiffness, such as eucalyptus wood, could potentially be used as a reinforced core.  相似文献   
4.
This research investigates the influence of seven different fiber types on the flexural performance of compacted cement-fiber-sand (CCFS) with four fiber fractions (0.5, 1, 1.5 and 2% by volume). The seven types of fibers are 12?mm polypropylene, 19?mm polypropylene, 40?mm polypropylene, 55?mm polypropylene, 33?mm steel, 50?mm steel and 58?mm polyolefin fibers. The overall CCFS performance was divided into seven sub design performance indicators: (1) peak strength; (2) peak strength ratio; (3) residual strength ratio; (4) ductility index; (5) toughness; (6) equivalent flexural strength ratio; and (7) maximum crack width. The interaction mechanism of the fiber/cement-sand interface was investigated by scanning electron microscopy. Finally, the effectiveness of each fiber type was compared and rated in terms of the overall performance. The results show that the 50?mm steel fiber provided the best overall sub performance, resulting in an excellent overall flexural performance; in comparison, the 12?mm polypropylene fiber exhibited very poor performance. However, the 19?mm polypropylene and 33?mm steel fiber specimens provided very good and good overall performances, respectively. The nature of the fiber surface and the fiber length affects the overall performance of CCFS. The surface of the steel fibers, compared to the other synthetic fiber types, is more hydrophilic and is more compacted in a cemented-sand matrix without separation of the interfacial zone, providing the best overall flexural performance.  相似文献   
5.
A new kind of Deep Cement Mixing (DCM) pile called Stiffened Deep Mixing Pile (SDCM) is introduced to mitigate the low flexural strength and unexpected failures of DCM piles. A jet grouting method with a jet pressure of 22 MPa, was utilized in the installation of DCM piles. The SDCM pile consists of a DCM pile with a precast reinforced concrete core pile inserted at its center. Pile and embankment load tests were conducted, and then the results of the field load tests were simulated by a 3D finite element method (FEM) to back-analyze and confirm the related design parameters. These parameters were then used further in numerical experiments. The field test results showed that the settlements and lateral movements of the SDCM pile using a prestressed concrete core pile with area ratio (Acore/ADCM) of 0.17 and a length ratio of 0.85 was less than those of the DCM pile by 40% and 60%, respectively. Moreover, the SDCM pile foundation increased the bearing capacity by as much as 2.2 times. The average lateral pile capacity of the SDCM piles was 15 times higher than the DCM piles. A strength reduction factor of 0.40 was obtained at the concrete core and the DCM interface from the full scale pullout test. The behavior of both the DCM and SDCM piles was confirmed from the subsequent 3D FEM simulations. From the 3D FEM simulations, the length of the concrete core pile had more influence on the settlements of the SDCM pile than its cross-sectional area. However, both the length and cross-sectional area of concrete core pile affected the lateral resistance of the SDCM pile.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号