首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
化学工业   3篇
能源动力   1篇
  2021年   2篇
  2019年   1篇
  2015年   1篇
排序方式: 共有4条查询结果,搜索用时 171 毫秒
1
1.
2.
质子交换膜燃料电池由于高能量转化率、零污染、低温启动等优点在新能源领域备受关注,但其成本和耐久性仍是本领域的挑战性课题。本文首先回顾了近年来国内外研究者在降低燃料电池成本和提高其耐久性方面取得的成就,从催化剂制备技术、膜电极结构优化、耐久性提升三个方面介绍了近年来国内外在降低膜电极铂载量、提高膜电极功率密度和耐久性方面的发展趋势,通过构筑铂基合金、核壳结构和纳米结构等催化剂能有效地降低铂载量,从而降低燃料电池成本;通过构筑多孔结构催化层或气体扩散层可以改善膜电极的微结构,从而提高电池的功率密度;通过开发新型质子交换膜、更换催化剂载体等方法可以提高膜电极的耐久性。最后,本文针对目前研究进展阐述提高膜电极稳定性仍然是目前的研究难题,并对未来的研究方向进行了展望。  相似文献   
3.
利用锡硅二元氧化物分别采用前修饰法和后修饰法修饰Pt/C催化剂,制备得到两种复合催化剂,并用于阳极催化层制备膜电极(MEA).首先,考察修饰方式对膜电极性能的影响.膜电极的电池性能测试表明,使用前修饰法制备的Pt/SnO2-SiO2/C复合催化剂表现出更优的电池性能:在电池温度为50℃、完全增湿条件下,0.6 V的电流密度高达1100 mA/cm2.同时该膜电极也显示出良好的自增湿性能和稳定性:在电池温度为50℃、完全不增湿(干气)条件下,0.6 V的电流密度为930 mA/cm2,且经过10 h稳定性测试后,性能仅降低13%,而空白膜电极在2 h内性能下降63%.进一步比较在不同相对湿度条件下的膜电极性能,结果表明该膜电极在相对湿度较低的条件下表现出优异的自增湿性能.根据实验数据,初步推测出一种使用Pt/SnO2-SiO2/C复合催化剂的膜电极的自增湿机理.  相似文献   
4.
使用自增湿膜电极可以减去燃料电池复杂的增湿系统,并使得膜电极的水热管理变得容易和简单,对于燃料电池的大规模商业化具有重要意义。本文主要从自增湿复合膜、自增湿催化层以及自增气体扩散层等几个方面介绍了近年来自增湿膜电极的一些重要研究进展和发展趋势。首先介绍了基于掺杂和复合机构的自增湿复合膜的发展状况,指出自增湿复合膜是最直接有效的自增湿方式;其次介绍了基于物理或化学方法构筑的自增湿催化层的研究现状,认为构筑自增湿催化层能够促进阴极侧电化学反应生成的水向阳极侧的反扩散,从而提高膜电极的低湿度性能;最后综述了自增湿气体扩散层,对这类电极的发展趋势及应用前景进行了展望。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号