首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   3篇
  国内免费   2篇
电工技术   2篇
综合类   1篇
化学工业   23篇
金属工艺   4篇
机械仪表   4篇
建筑科学   1篇
能源动力   11篇
轻工业   5篇
无线电   12篇
一般工业技术   27篇
冶金工业   9篇
自动化技术   13篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   10篇
  2019年   7篇
  2018年   14篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   12篇
  2012年   8篇
  2011年   8篇
  2010年   8篇
  2009年   7篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1994年   1篇
  1983年   1篇
排序方式: 共有112条查询结果,搜索用时 250 毫秒
1.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
2.

Wireless communication networks have much data to sense, process, and transmit. It tends to develop a security mechanism to care for these needs for such modern-day systems. An intrusion detection system (IDS) is a solution that has recently gained the researcher’s attention with the application of deep learning techniques in IDS. In this paper, we propose an IDS model that uses a deep learning algorithm, conditional generative adversarial network (CGAN), enabling unsupervised learning in the model and adding an eXtreme gradient boosting (XGBoost) classifier for faster comparison and visualization of results. The proposed method can reduce the need to deploy extra sensors to generate fake data to fool the intruder 1.2–2.6%, as the proposed system generates this fake data. The parameters were selected to give optimal results to our model without significant alterations and complications. The model learns from its dataset samples with the multiple-layer network for a refined training process. We aimed that the proposed model could improve the accuracy and thus, decrease the false detection rate and obtain good precision in the cases of both the datasets, NSL-KDD and the CICIDS2017, which can be used as a detector for cyber intrusions. The false alarm rate of the proposed model decreases by about 1.827%.

  相似文献   
3.
The solvothermal synthesis of highly luminescent and homogeneous Gd2O3:Eu3+ nanophosphor using diethylene glycol as medium, followed by controlled combustion with citric acid as fuel is reported. The influence of concentrations of carboxylic acid and metal cations on the structure, morphology and luminescence properties are investigated in detail. The microscopic investigations indicate the nanocrystalline nature and the strong influence of cation concentration on the size, shape and agglomeration of the particles. It is found that increase in concentration of metal cations lead to the reduction in agglomeration of nanophosphors. The large value of intensity parameter Ω2, suggested that Eu3+ ions reside in a more asymmetric environment, resulted in intense emission due to 5D07F2 electric dipole transition. Emission decay analysis of the samples exhibited one exponential nature. The samples prepared under optimum conditions showed a quantum efficiency of 78.63% and a moderately high life time of 1.217 ms.  相似文献   
4.
An attempt has been made in the present study to examine the microphysical structure of a non‐squall Tropical Cloud Cluster (TCC). Three‐dimensional model simulations of cloud microphysical structure associated with a non‐squall TCC occurred on 26 October 2005 over the South Bay of Bengal have been carried out. The initial conditions for the model simulations were improved by incorporating upper air radiosonde observations and Indian Mesosphere Stratosphere Troposphere (MST) radar wind observations through analysis nudging. The horizontal and vertical distribution of the cloud hydrometeor fields observed from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are compared to those simulated by a mesoscale model using a sophisticated microphysical scheme. Substantial differences are noticed in the amounts of cloud microphysical parameters, with simulated values of hydrometeors being higher than TMI retrievals. Spatial distribution of Cloud Liquid Water (CLW) and Rain Water (RNW) from TMI and model simulations correspond well with each other. The cloud microphysical structure during the initial and mature phases of the storm is also investigated. Comparisons of horizontal and vertical reflectivity structure from the TRMM‐Precipitation Radar (PR) and those simulated by the model show reflectivity cores of values greater than 30 dBZ. The TRMM‐PR echo tops are 3–4 km higher than the simulated echo tops. The 24 hr accumulated precipitation from model simulations are then verified with the combined rainfall product from the TRMM observations.  相似文献   
5.
Increasing power demands have necessitated the development of energy efficient systems in the industrial sector. At present, about 10% of the overall electric power used by large industrial plants is consumed by high-capacity compressors supplying compressed air. Likewise, in a gas turbine power plant, nearly half the generated power is used for driving the compressor. The work of compression is proportional to inlet air temperature, and cooling the inlet air can save considerable amount of power in large turbo machines during hot summer months. Inlet fogging is a popular means of inlet air cooling, and fog nozzles are the most critical components in an inlet fogging installation. Majority of these installations employ impaction pin nozzles. In the present work, experiments are conducted over a wide range of operating parameters in variable length wind tunnels of different cross sections in order to investigate the performance of impaction pin nozzle in inlet fogging. Flow visualization and measurements are carried out to analyze the fog behavior and identify suitable nozzle locations in typical air ducts. The results show that impaction pin nozzles are suitable for inlet fogging applications.  相似文献   
6.
The heat and mass transfer of unsteady magnetohydrodynamic (MHD) flow of Newtonian fluid with Hall current and ion-slip currents due to vast possible engineering applications is very important in areas like power generators, MHD accelerators, refrigeration coils, electric transformers, and heating elements. A quality-based research on Hall and ion-slip consequences on the rotating unsteady MHD flow past an infinite perpendicular moving absorbent plate have not been performed. Therefore, the Hall and ion-slip consequences on rotating unsteady MHD flow past an infinite perpendicular moving absorbent plate have not been performed. The similarity transformations are engaged to transfer the governing partial differential equations within favor of the scheme of nonlinear ordinary differential equations and elucidated numerically making use of cubic B-splines collocation mechanism. The influences of felicitous parameters on basic equations are remarked on through graphical profiles. Even though the computational estimations of frictional forces, Nusselt number, and Sherwood number for various parameters are distributed in tabular format and exchanged of views comparatively.  相似文献   
7.
Wire breakages and spark absence are two typical machining failures that occur during wire electric discharge machining (wire-EDM), if appropriate parameter settings are not maintained. Even after several attempts to optimize the process, machining failures cannot be eliminated completely. An offline classification model is presented herein to predict machining failures. The aim of the current study is to develop a multiclass classification model using an artificial neural network (ANN). The training dataset comprises 81 full factorial experiments with three levels of pulse-on time, pulse-off time, servo voltage, and wire feed rate as input parameters. The classes are labeled as normal machining, spark absence, and wire breakage. The model accuracy is tested by conducting 20 confirmation experiments, and the model is discovered to be 95% accurate in classifying the machining outcomes. The effects of process parameters on the process failures are discussed and analyzed. A microstructural analysis of the machined surface and worn wire surface is conducted. The developed model proved to be an easy and fast solution for verifying and eliminating process failures.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-020-00327-w  相似文献   
8.
We introduce a novel heterogeneous multiscale method for the elastic analysis of two-dimensional domains with a complex microstructure. To this end, the multiscale finite element method is revisited and originally upgraded by introducing virtual element discretizations at the microscale, hence allowing for generalized polygonal and nonconvex elements. The microscale is upscaled through the numerical evaluation of a set of multiscale basis functions. The solution of the equilibrium equations is performed at the coarse scale at a reduced computational cost. We discuss the computation of the multiscale basis functions and corresponding virtual projection operators. The performance of the method in terms of accuracy and computational efficiency is evaluated through a set of numerical examples.  相似文献   
9.
Three-phase single DC-source based multilevel inverter topologies play a pivotal role in industrial applications due to the reduced number of components and higher efficiency. This paper emphasizes the inverter for medium-voltage applications that employ a conventional three-phase T-type structure (T-NPC). The primary circuit of the proposed configuration consists of a T-NPC structure connected to the half-bridge cells at the top and the bottom sides of each phase. The secondary circuit consists of DC-link capacitors whose voltage balancing is attained through a separate voltage balancing circuit (VBC). Using the proposed configuration, the number of components and independent DC supplies are reduced compared with the conventional topologies such as a neutral point clamped (NPC) inverter, a flying capacitor (FC) inverter, and a cascaded H-bridge (CHB) inverter for the same number of output voltage levels. Hence, the proposed topology results in the reduction of weight, volume, and power losses of the inverter. A sine-triangle comparison method is employed in the field programmable gate array (FPGA) platform to generate the firing pulses of the circuit switches. The effectiveness of the proposed topology is verified with simulation studies and is experimentally validated with a scaled-down prototype.  相似文献   
10.
Abstract

Ensuring uniform addition of coloring material to the fabric is an essential requirement in the textile dyeing process. Beam dyeing machine consists of a special beam, the barrel of which is evenly perforated with holes. The dye liquor is forced into the fabric material through this beam. For uniform fabric coloring, an equal distribution of the dye liquor through the porous beam has to be ensured. The present methodology employs theoretical and computational fluid dynamics aspects of beam dyeing process to obtain better performance. The analysis of a beam with a single row of branches shows that nonuniformity increases with an increase in inlet mass flow. Further beam flow distribution with and without fabric are studied for different parameters, such as branch diameter, inlet mass flow rate, operating conditions, and flow reversal. The present results provide guidelines to improve the levelness of the dye distribution in the fabric material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号