首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
化学工业   6篇
金属工艺   1篇
能源动力   4篇
无线电   3篇
一般工业技术   6篇
冶金工业   6篇
  2022年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2007年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1980年   1篇
排序方式: 共有26条查询结果,搜索用时 46 毫秒
1.
Point-to-point functional movements involve simultaneous shoulder and elbow joint rotations. In able-bodied subjects these movements are fully automatic, and feed-forward control ensures the synergistic activity of many muscles. Synergy between joint rotations was defined and described as a scaling between joint angular velocities [19]. Similarly, subjects who can control their shoulder movements may be assisted in reaching tasks by functional electrical stimulation (FES) of elbow extensor muscles. The synergistic control paradigm can be implemented in real-time by employing a hierarchically structured production-rules method. The use of production-rules necessitates the acquisition of knowledge and the assembly of a rule-base. A nonparametric technique was designed for the identification of the rules. The identification process was divided into two phases: determination of the scaling parameters, and determination of the stimulation parameters. The scaling parameters, needed for the coordination of movements, were determined in able-bodied subjects. Those depend exclusively on the initial and target positions of the hand. The number of scalings could be reduced by dividing the workspace into 12 zones. The stimulation parameters, needed for the execution of movements, were determined in subjects with paralyzed elbow extensor muscles by identifying triplets: elbow angular velocity, elbow angular acceleration (velocity increments), and the corresponding pulse durations for various classes of movements and loads attached to the hand.  相似文献   
2.
3.
Here, we report rich and new resonant Raman and infrared (IR) spectral features for several sub-nanometer diameter single wall carbon nanotubes (sub-nm SWCNTs) samples grown using chemical vapor deposition technique operating at different temperatures. We find that the high curvature in sub-nm SWCNTs leads to (i) an unusual S-like dispersion of the G-band frequency due to perturbations caused by the strong electron–phonon coupling, (ii) an activation of diameter-selective intermediate frequency modes that are as intense as the radial breathing modes (RBMs), and (iii) a clear observation of the IR modes. Furthermore, an analytical approach which includes the effects of curvature into the overlap integral and the energy gap between the van Hove singularities is discussed. Lastly, we show that the phonon spectra for sub-nm SWCNTs obtained from the molecular dynamic simulations which employs a curvature-dependent force field concur with our experimental observations.  相似文献   
4.
Gas-liquid contacting in tubular reactors was simulated using an Eulerian-Eulerian CFD approach in which accurate interphase momentum closure relations are incorporated, bubble-induced turbulence is accounted for, and population balance equations are used to describe bubble breakage and coalescence. The ability of two breakup kernels (Luo, H., Svendsen, H.F., 1996. Theoretical model for drop and bubble breakup in turbulent dispersions. A.I.Ch.E. Journal 42, 1225-1233; Lehr, F., Millies, M., Mewes, D., 2002. Bubble size distributions and flow fields in bubble columns. A.I.Ch.E. Journal 48, 2426-2443) and three coalescence kernels (Prince, M.J., Blanch, H.W., 1990. Bubble coalescence and breakup in air sparged bubble columns. A.I.Ch.E. Journal 36, 1485-1499; Luo, H., 1993. Coalescence, breakup and liquid recirculation in bubble column reactors. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim; Lehr, F., Millies, M., Mewes, D., 2002. Bubble size distributions and flow fields in bubble columns. A.I.Ch.E. Journal 48, 2426-2443) to accurately predict several flow parameters in pipe flow was tested.Good agreement between simulation and experimental results (radial profiles of gas holdup, turbulence intensity, and local Sauter bubble diameter) was achieved without the use of empirically derived relationships (such as Drift flux) by adjusting a single parameter which accounts for the deviation in the coalescence behaviour of tap water from that of pure water. The approach adopted in this investigation may thus be applicable to more complex hydrodynamic situations such as those encountered in mechanically agitated tanks and the need for extensive experimental testing may be replaced by single measurement of the effect interfacial properties have on coalescence rates.  相似文献   
5.
This work deals with the effect of catalyst preparation method of the mixed Co, Mg and La oxide catalysts on their structure and catalytic properties for ammonia decomposition. Two methods are used for catalysts preparations impregnation and co-precipitation (in air and in pure O2 atmosphere), The Mg/La = 2 molar ratio and 5 wt% of cobalt content was maintained same in all catalysts. The catalyst performance was evaluated in the temperature range 300–550 °C at atmospheric pressure. The prepared catalysts were characterized by BET, XRD, TPR, XPS, CO2-TPD and SEM techniques. No pronounced differences were observed in BET among the catalysts. It was found that the 5CML-OXY (5 wt%Co over MgLa catalyst prepared by co-precipitation method in oxygen atmosphere) has superior activity among the other catalysts. This could be attributed to availability of easily reducible cobalt species determined by TPR studies and enhanced interaction between Mg and La determined by SEM and XPS. The moderate basic site density determined by CO2-TPD results was also increased in 5CML–OXY catalysts compared with other catalysts. These consequences are might be one of the reasons for enhanced activity of 5CML–OXY catalyst compared to other catalysts. Hence catalyst preparation by co-precipitation in oxygen atmosphere is the best method which might be one of the parameters that influenced on catalytic properties of the cobalt on MgOLa2O3 system, for ammonia decomposition.  相似文献   
6.
Due to their unusual electronic and vibrational properties, single walled carbon nanotubes (SWCNTs) with sub-nanometer diameters d ∼ 0.5–0.9 nm have recently gained interest in the carbon community. Using UV–Vis–NIR spectroscopy and ultra-centrifugation, we have conducted a detailed study of the π plasmon energy (present at∼5–7 eV) in sub-nm SWCNTs as a function of the size of the bundle. We find that the energy of the π plasmon peak E varies with the bundle diameter Dh as E = (-0.023 eV)ln(Dh/do) + 5.37 eV, where do = 0.5 nm and corresponds to the smallest tube diameter.1 This is compared with the same data for HiPCo and Carbolex SWCNTs of larger diameter (1–1.4 nm) confirming a clear dependence of E on the bundle size, which is present in addition to the previously reported dependence of E on SWCNT diameter d.  相似文献   
7.
8.
Thirty-seven of 41 consecutive patients with recurrent anterior instability of the shoulder were retrospectively observed for a mean of 5.6 years (range, 4 to 10) after an arthroscopic stabilization procedure had been performed. The operative technique involved the use of transglenoid sutures to repair the capsule and labrum. According to the criteria established by Rowe, 27 patients (74%) had good or excellent results, and 3 patients (7%) were graded as fair. Seven patients (19%) developed recurrent instability after the procedure and had failed results. Failure rates were equal in patients with a history of recurrent dislocation and those with recurrent subluxation. Absence of a Bankart lesion at operation was associated with postoperative instability (P = 0.03). The presence or size of humeral head defects did not influence the result. Eight of 12 athletes who engaged in sports requiring repetitive overhead shoulder motion returned to full activity, and none of the 12 developed instability after operation. Four of the 13 patients who participated in contact sports or recreational skiing developed postoperative instability (P = 0.21). All failures occurred within 2 years of the procedure.  相似文献   
9.
Podila R  Anand B  Spear JT  Puneet P  Philip R  Sai SS  Rao AM 《Nanoscale》2012,4(5):1770-1775
We explore the effects of crystallite size (L(a)) on the linear and non-linear optical properties of chemical vapor deposition grown polycrystalline graphene. The π-plasmon resonance present at ~4.75 eV (~260 nm) in the optical absorption spectrum of graphene follows the empirical relationship λ(π) = 250.5 nm + 89.5 nm(2)/L(a), where λ(π) represents the π-plasmon wavelength. Furthermore, our Z-scan studies reveal that the crystallite size significantly changes the saturation intensity in CVD grown graphene. Notably, in comparison to epitaxial graphene layers grown on SiC wafers which exhibit a photogenerated carrier lifetime of few picoseconds, we find that the photogenerated carriers in our CVD grown graphene can exhibit lifetimes as long as nanoseconds.  相似文献   
10.
For a practical realization of graphene‐based logic devices, the opening of a band gap in graphene is crucial and has proven challenging. To this end, several synthesis techniques, including unzipping of carbon nanotubes, chemical vapor deposition, and other bottom‐up fabrication techniques have been pursued for the bulk production of graphene nanoribbons (GNRs) and graphene quantum dots (GQDs). However, only limited progress has been made towards a fundamental understanding of the origin of strong photoluminescence (PL) in GQDs. Here, it is experimentally shown that the PL is independent of the functionalization scheme of the GQDs. Following a series of annealing experiments designed to passivate the free edges, the PL in GQDs originates from edge‐states, and an edge‐passivation subsequent to synthesis quenches the PL. The results of PL studies of GNRs and carbon nano‐onions are shown to be consistent with PL being generated at the edge sites of GQDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号