首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   2篇
电工技术   8篇
化学工业   14篇
金属工艺   1篇
机械仪表   1篇
建筑科学   1篇
能源动力   5篇
轻工业   10篇
水利工程   2篇
无线电   46篇
一般工业技术   31篇
冶金工业   4篇
自动化技术   15篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   8篇
  2020年   1篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   10篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   9篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有138条查询结果,搜索用时 558 毫秒
1.
In the present study, we report an eco-friendly and simple route to design and synthesize novel nanocomposite catalyst based on platinum nanoparticles anchored on binary support of graphitic carbon nitride (g-C3N4) and cobalt-metal-organic framework (ZIF-67). For this purpose, ZIF-67 was prepared by precipitation method and g-C3N4 was prepared through thermal polymerization method. Later, ZIF-67 and g-C3N4 were hybridized through sonication to get homogeneous g–C3N4–ZIF-67 nanocomposite support material. Platinum nanoparticles (PtNPs) were uniformly deposited on g–C3N4–ZIF-67 by an electrochemical method. The as-developed nanocatalyst was characterized by morphological, structural and electrochemical techniques. The electrocatalytic activity of PtNPs@g–C3N4–ZIF-67 nanocatalyst towards butanol oxidation was evaluated via CV, CA, LSV and EIS in an alkaline medium. Results revealed that the proposed catalyst showed greatly enhanced electrooxidation of butanol in terms of high magnificent current density, lower oxidation potential, excellent long-term stability, large surface area, low charge transfer resistance and less toxic ability. Enhanced catalytic performance of the proposed catalyst could be ascribed to the synergistic effect of g–C3N4–ZIF-67 nanocomposite and PtNPs. The PtNPs@g–C3N4–ZIF-67 catalyst holds promising potential applications to be used as an anodic electrocatalyst for the development of high-performance alkaline fuel cells.  相似文献   
2.
Wireless Personal Communications - This paper considers half-duplex cooperative spectrum sharing scheme where both primary and secondary systems mutually cooperate with each other to exploit...  相似文献   
3.
Polymer ceramic composites form a suitable material system for low temperature fabrication of embedded capacitors appropriate for the MCM-L technology. Improved electrical properties such as permittivity can be achieved by efficient filling of polymers with high dielectric constant ceramic powders such as lead magnesium niobate-lead titanate (PMN-PT) and barium titanate (BT). Photodefinable epoxies as the matrix polymer allow fine feature definition of the capacitor elements by conventional lithography techniques. The optimum weight percent of dispersant is tuned by monitoring the viscosity of the suspension. The dispersion mechanism (steric and electrostatic contribution) in a slightly polar solvent such as propylene glycol methyl ether acetate (PGMEA) is investigated from electrophoretic measurements. A high positive zeta potential is observed in the suspension, which suggests a strong contribution of electrostatic stabilization. By optimizing the particle packing using a bimodal distribution and modified processing methodology, a dielectric constant greater than 135 was achieved in PMN-PT/epoxy system. Suspensions are made with the lowest PGMEA content to ensure the efficiency of the dispersion and efficient particle packing in the dried film. Improved colloidal processing of nanoparticle-filled epoxy is a promising method to obtain ultra-thin capacitor films (<2/spl mu/m) with high capacitance density and improved yield. Capacitance of 35 nF/cm/sup 2/ was achieved with the thinnest films (2.5-3.0 /spl mu/m).  相似文献   
4.
A wafer level packaging technique has been developed with an inherent advantage of good solder joint co-planarity suitable for wafer level testing. A suitable weak metallization scheme has also been established for the detachment process. During the fabrication process, the compliancy of the solder joint is enhanced through stretching to achieve a small shape factor. Thermal cycling reliability of these hourglass-shaped, stretch solder interconnections has been found to be considerably better than that of the conventional spherical-shaped solder bumps.  相似文献   
5.
Ceramic and Glass-Ceramic Packaging in the 1990s   总被引:22,自引:0,他引:22  
A broad overview of packaging involving interconnecting, powering, protecting, and cooling semiconductor chips to meet a variety of computer system needs is presented. The general requirements for ceramics in terms of their thermal, mechanical, electrical, and dimensional control requirements are presented, both for high-performance and low-performance applications. Glass-ceramics are identified as the best candidates for high-performance systems, and aluminum nitride, alumina, or mullite are identified for low-performance systems. Glass-ceramic/copper substrate technology is discussed as an example of high-performance ceramic packaging for use in 1990s. Lower-dielectric-constant ceramics such as composites of silica, borosilicate, and cordierite, with or without polymers and porosity, are projected as potential ceramic substrate materials by the year 2000.  相似文献   
6.
Prostate cancer accounts for one-third of noncutaneous cancers diagnosed in US men and is a leading cause of cancer-related death. Advances in Fourier transform infrared spectroscopic imaging now provide very large data sets describing both the structural and local chemical properties of cells within prostate tissue. Uniting spectroscopic imaging data and computer-aided diagnoses (CADx), our long term goal is to provide a new approach to pathology by automating the recognition of cancer in complex tissue. The first step toward the creation of such CADx tools requires mechanisms for automatically learning to classify tissue types—a key step on the diagnosis process. Here we demonstrate that genetics-based machine learning (GBML) can be used to approach such a problem. However, to efficiently analyze this problem there is a need to develop efficient and scalable GBML implementations that are able to process very large data sets. In this paper, we propose and validate an efficient GBML technique——based on an incremental genetics-based rule learner. exploits massive parallelisms via the message passing interface (MPI) and efficient rule-matching using hardware-implemented operations. Results demonstrate that is capable of performing prostate tissue classification efficiently, making a compelling case for using GBML implementations as efficient and powerful tools for biomedical image processing.  相似文献   
7.
This paper presents a computationally efficient approach for mobile subscriber position estimation in wireless networks. A method of data scaling assisted by timing adjust is introduced in fingerprint-based location estimation under a framework which allows for minimising computational cost. The proposed method maintains a comparable level of accuracy to the traditional case where no data scaling is used and is evaluated in a simulated environment under varying channel conditions. The proposed scheme is studied when it is augmented by a hidden-Markov model to match the internal parameters to the channel conditions that present, thus minimising computational cost while maximising accuracy. Furthermore, the timing adjust quantity, available in modern wireless signalling messages, is shown to be able to further reduce computational cost and increase accuracy when available. The results may be seen as a significant step towards integrating advanced position-based modelling with power-sensitive mobile devices.  相似文献   
8.
Bixa orellana L. seeds possess a resinous lipid (6.3 %), which has a pungent and spicy odour. The seed is known for its medicinal properties such as anti‐inflammatory, antipyretic activity and as a cure for tonsilitis. Trachyspermum copticum L. seed is a well known digestive aid and relief from colic pain. T. copticum possesses essential oil rich in thymol (>50 %) and lipid (15.6 %). The present study was aimed to quantify lipid classes of these two species by silicic acid chromatography and analyze their fatty acid composition by gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS). It was observed that the seed lipids are rich in neutral lipids with 98.1 and 95.2 % and lower quantities of glycolipids of 1.5 and 3.8 % and phospholipids of 0.36 and 1.0 % in B. orellana and T. copticum, respectively. The fatty acid composition of B. orellana seed lipid showed major quantities of palmitic (26.9 %), linoleic (26.1 %), oleic (17.5 %), linolenic (15.1 %), stearic acid (10.8 %) and small quantities of eicosanoic acid (3.6 %). In T. copticum seed lipids, petroselinic acid (68.3 %) and linoleic acid (25.3 %) together constituted 93 % of the total lipid. The results revealed that the lipids after recovery of the essential components namely, bixin and volatile oil from B. orellana and T. copticum, respectively can be further explored for industrial applications.  相似文献   
9.
With the innovation of Cognitive Radio Wireless Mesh Network’s, Opportunistic Spectrum Allocation can possibly moderate spectrum lack, by letting Secondary User’s a chance to sense and use unused bits of opportunistic licensed spectrum without any unfavourable effect on the Primary User’s. In Cognitive Radio Wireless Mesh Network’s, the Medium-Access-Control protocols characterizes the utilization of spectrum proficiently by allocating the channels among the users. Majority of proposed Medium-Access-Control protocols are utilizing Common-Control-Channel for dealing with the assets of Secondary-Users. The major downsides of these Medium-Access-Control protocols are broadcasting of Control-channel when substantial number of Secondary-User exists. In contrast with these Medium-Access-Control protocols, we develop an algorithm Time-Slotted-Allocation-Medium-Access-Control (TSA-MAC) protocol which is based on Clustered Time-Division-Medium-Access approach, which permits Secondary-User’s to allocate opportunistic spectrum with the help of co-operative decisions by exchange control information. In this approach, we are dividing the channels as different slots on which Secondary-User’s can transfer control and data packets. The TSA-MAC protocol will enhance the throughput for the Secondary-User’s over the communication channel. And also this method will facilitate to decide and allocate free channels for Secondary-User’s without interfering with Primary User’s.  相似文献   
10.
The system-on-a-package (SOP) paradigm proposes a package level integration of digital, RF/analog and opto-electronic functions to address future convergent microsystems. Two major components of SOP fabrication are sequential build-up of multiple layers (4–8) of conducting copper patterns with interlayer dielectrics on a board and multiple ICs flip-chip bonded on the top layer. A wide range of passives, wave-guides and other RF and opto-electronic components buried within the dielectric layers provide the multiple functions on a single microminiaturized platform.The routing of future nanoscale ICs with 10,000+ I/Os require multiple build-up layers of ultra fine board feature sizes of 10 m lines/space widths and 40 m pad diameters. Current FR4 boards cannot achieve this build-up technology because of dimensional instability during processing. These boards also undergo high warpage during the sequential build-up process which limits the fine-line lithography and also causes misalignment between the vias and their corresponding landing pads. In addition, the CTE mismatch between the silicon die and the board leads to IC-package interconnect reliability concerns, particularly in future fine-pitch assemblies where underfilling becomes complicated and expensive.This work reports experimental and analytical work comparing the performance of organic and novel ceramic boards for SOP requirements. The property requirements as deduced from these results indicate that a high stiffness and tailorable CTE from 2–4 ppm/C is required to enable SOP microminiaturized board fabrication and assembly without underfill. A novel ceramic board technology is proposed to address these requirements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号