首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学工业   2篇
能源动力   6篇
无线电   2篇
一般工业技术   4篇
冶金工业   1篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  1993年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Minocycline     
Periodontal diseases are bacterial infections and antimicrobial agents appear to offer great potential in their treatment and prevention. One such chemotherapeutic agent is minocycline. The aim of this paper is to review the literature on this antibiotic concerning in vitro and in vivo studies, its pharmacokinetics and secondary effects.  相似文献   
2.
Performance degradation data obtained from single solid oxide fuel cells, tested at 850 °C with air and humidified H2 and using Ni‐YSZ anode supported cells, are presented here. Microscopic investigation is carried out on both anode and cathode to quantify variations in the morphology at different operation times. The comparison between the measurements on the cells and the SEM image analysis allows to conclude that there is no relationship between the initial cell activation and microstructural modifications of the electrodes. On the other hand, it was found that cell degradation is strictly related to the coarsening of Ni particles occurring in the anode. A theoretical analysis based on an electrode micromodel has been performed in order to compare the variation in performance, expected from particle size change, with the observed data. The model confirmed the conclusions of the experimental results.  相似文献   
3.
One of the major limitations of the nickel (Ni) - yttria-stabilized zirconia (YSZ) anode support for solid oxide fuel cells (SOFC) is its low capability to withstand transients between reducing and oxidizing atmospheres (“RedOx” cycle), owing to the Ni-to-NiO volume expansion. This work presents results on different anode supports fabricated by tape casting. Three compositions are prepared, as the outcome of a preceding design of experiment approach. The NiO proportion is 40, 50 and 60 wt% of the anode composite.The anode support characteristics like shrinkage during sintering, in-situ conductivity at high temperature, electrochemical performance and tolerance against RedOx cycles have been measured. Performance up to 0.72 W cm−2 (0.62 V, 800 °C) is recorded for the 60 wt% NiO sample on small cells. The open circuit voltage is maintained within ±5 mV after 10 full RedOx cycles at 800 °C and one at 850 °C. Performances tend to be stabilized after one or multiple RedOx cycles. The microstructural observations show round Ni particles after the first reduction; after a RedOx cycle, the Ni particles include micro-porosities that are stable under humidified reducing atmosphere for more than 300 h.  相似文献   
4.
Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.  相似文献   
5.
Implementing photovoltaic devices based on high efficiency thin‐film technologies on cheap, light‐weight and flexible polymeric substrates is highly appealing to cut down costs in industrial production and to accelerate very large scale deployment of photovoltaics in the upcoming years. Lift‐off processes, which allow separating active layers from primary substrates and subsequent transfer onto an alternative substrate without modifying the upstream production process and without performance losses, are an emerging alternative to direct growth on polymeric substrates. This study concerns the feasibily of direct mechanical lift‐off process for high efficiency Cu(In,Ga)Se2 (CIGS) thin film solar cells grown by coevaporation on glass/molybdenum substrates without performance losses. The study presents an in depth characterization (SEM,AFM,GIXRD,XPS) of samples leading to excellent lift‐off properties. They are explained by a specific gallium rich CIGS graded interface structure according to the interfacial sequence glass/Mo/MoSe2/GaxSey/Ga‐rich‐CIGS. The interfacial layer, attributed to GaSe, has a layered structure and out performs the molybdenum diselenide layered layer which forms spontaneously at the interface Mo/CIGS. It allows a very easy lift‐off process at the interface GaSe/CIGS thanks to Van‐der‐Waals adhesion mechanism in GaSe. Key physical‐chemical parameters are identified and analyzed. After lift‐off, an efficiency of 14.3%, higher than the initial reference CIGS solar cell efficiency (13.8%) is measured.  相似文献   
6.
The increasing quality and durability of solid oxide fuel cells (SOFCs) state-of-the-art materials renders the long-term testing of fuel cells difficult since considerably long equipment times are needed to obtain valuable results. Moreover, reproducibility issues are common due to the high sensitivity of the performance and degradation on the testing conditions. An original segmented cell configuration has been adopted in order to carry out four tests in parallel, thus decreasing the total experimental time and ensuring the same operating conditions for the four segments. The investigation has been performed on both anode-supported cells and symmetrical Lanthanum-Strontium Manganite-Yttria-stabilized Zirconia (LSM-YSZ) electrolyte-supported cells. In separate tests, the influence of variables like cathode thickness, current density and cathode composition on performance and degradation have been explored on anode-supported cells. Furthermore, the effect of chromium poisoning has been studied on electrolyte-supported symmetric cells by contacting one segment with a chromium-iron interconnect material. Long-term polarization of the segments is controlled with a multi-channel galvanostatic device designed in-house. Electrochemical characterization has been performed through electrochemical impedance spectroscopy (EIS) at different H2 partial pressures, temperatures and bias current, effectively demonstrating the direct impact of each studied variable on the cell performance and degradation behavior. Segmented cell testing has been proven to be an effective strategy to achieve better reproducibility for SOFC measurements since it avoids the inevitable fluctuations found in a series of successively run tests. Moreover, simultaneous testing increased n-fold the data output per experiment, implying a considerable economy of time.  相似文献   
7.
State-of-the-art nickel-based SOFC anode-supported cells are highly sensitive to reoxidation of the metal phase at the temperature of utilization. This work presents results on redox stable nickel-YSZ (yttria-stabilized zirconia) anode-supported cells, for both smaller and larger scale cells. A 55 cm2 cell was mounted in a SOFC stack repeat element and tested over 40 full redox cycles. Performances and electrochemical impedance results of the repeat element are compared to the smaller sized cells of similar anode support structure.  相似文献   
8.
An adsorption refrigeration system can be driven by low grade heat and uses natural refrigerant with the advantage of reducing the greenhouse gases emission.How...  相似文献   
9.
Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation.The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit.The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets.The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling were analysed in a dedicated and separate model.The value of the minimum stable thickness of the MIC is large, even though significantly affected by the operating conditions. This phenomenon prevents any unconsidered decrease of the thickness to reduce the thermal inertia of the stack. Thermal gradients and the shape of the temperature profile during operation induce significant decreases of the contact pressure on the gaskets near the fuel manifold, at the inlet or outlet, depending on the flow configuration. On the contrary, the electrical contact was ensured independently of the operating point and history, even though plastic strain developed in the gas diffusion layer.  相似文献   
10.
Erroneous information from sensors affect process monitoring and control. An algorithm with multiple model identification methods will improve the sensitivity and accuracy of sensor fault detection and data reconciliation (SFD&DR). A novel SFD&DR algorithm with four types of models including outlier robust Kalman filter, locally weighted partial least squares, predictor-based subspace identification, and approximate linear dependency-based kernel recursive least squares is proposed. The residuals are further analyzed by artificial neural networks and a voting algorithm. The performance of the SFD&DR algorithm is illustrated by clinical data from artificial pancreas experiments with people with diabetes. The glucose-insulin metabolism has time-varying parameters and nonlinearities, providing a challenging system for fault detection and data reconciliation. Data from 17 clinical experiments collected over 896 h were analyzed; the results indicate that the proposed SFD&DR algorithm is capable of detecting and diagnosing sensor faults and reconciling the erroneous sensor signals with better model-estimated values. © 2018 American Institute of Chemical Engineers AIChE J, 65: 629–639, 2019  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号