首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1838篇
  免费   47篇
  国内免费   14篇
电工技术   13篇
综合类   3篇
化学工业   283篇
金属工艺   66篇
机械仪表   43篇
建筑科学   26篇
矿业工程   2篇
能源动力   88篇
轻工业   73篇
水利工程   8篇
石油天然气   5篇
无线电   102篇
一般工业技术   314篇
冶金工业   740篇
原子能技术   6篇
自动化技术   127篇
  2024年   6篇
  2023年   31篇
  2022年   51篇
  2021年   57篇
  2020年   58篇
  2019年   48篇
  2018年   69篇
  2017年   67篇
  2016年   68篇
  2015年   33篇
  2014年   58篇
  2013年   104篇
  2012年   45篇
  2011年   78篇
  2010年   57篇
  2009年   51篇
  2008年   47篇
  2007年   47篇
  2006年   26篇
  2005年   24篇
  2004年   16篇
  2003年   20篇
  2002年   13篇
  2001年   17篇
  2000年   14篇
  1999年   32篇
  1998年   206篇
  1997年   117篇
  1996年   72篇
  1995年   43篇
  1994年   32篇
  1993年   41篇
  1992年   14篇
  1991年   10篇
  1990年   7篇
  1989年   12篇
  1988年   7篇
  1987年   21篇
  1986年   19篇
  1985年   10篇
  1984年   12篇
  1983年   12篇
  1982年   8篇
  1981年   13篇
  1980年   6篇
  1979年   6篇
  1978年   4篇
  1977年   27篇
  1976年   55篇
  1970年   2篇
排序方式: 共有1899条查询结果,搜索用时 9 毫秒
1.
Levels of temporary invalidity because of catching cold were analyzed in 101 working women over two years and these women's levels of serum iron, total iron-binding capacity of the serum, transferrin saturation with iron, serum ferritin, and red cell ferritin measured. Women with stable iron reserves in the body virtually have no sick leaves because of catching cold, whereas in those with iron deficiency susceptibility to catching cold is increased, and if iron metabolism intensity in the body grows, invalidity periods are much longer. Normalization of not only iron reserves in the body, but correction of iron metabolism as well should be regarded as a factor exerting a favorable effect on body resistance to catching cold.  相似文献   
2.
3.
4.
Studies on some properties such as the density, the degradation temperatures, the morphology and the spectral features of the ligno‐cellulose fiber Hildegardia were carried out in both untreated and alkali treated form. The fibers are found to have good morphology and moderate initial and final degradation temperatures. On alkali treatment, the lignin was found to be eliminated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2216–2221, 2002  相似文献   
5.
The effects of microstructure on the tensile properties and deformation behavior of a binary Ti-48Al gamma titanium aluminide were studied. Tensile-mechanical properties of samples with microstructures ranging from near γ to duplex to fine grained, near- and fully-lamellar were determined at a range of temperatures, and the deformation structures in these characterized by transmission electron microscopy (TEM). Microstructure was observed to exert a strong influence on the tensile properties, with the grain size and lamellar volume fraction playing connected, but complex, roles. Acoustic emission response monitored during the tensile test revealed spikes whose amplitude and frequency increased with an increase in the volume fraction of lamellar grains in the microstructure. Analysis of failed samples suggested that microcracking was the main factor responsible for the spikes, with twinning providing a minor contribution in the near-lamellar materials. The most important factor that controls ductility of these alloys is grain size. The ductility, yield stress, and work-hardening rate of the binary Ti-48Al alloy exhibit maximum values between 0.50 and 0.60 volume fraction of the lamellar constituent. The high work-hardening rate, which is associated with the low mobility of dislocations, is the likely cause of low ductility of these alloys. In the near-γ and duplex structures, slip by motion of 1/2<110] unit dislocations and twinning are the prevalent deformation modes at room temperature (RT), whereas twinning is more common in the near- and fully-lamellar structures. The occurrence of twinning is largely dictated by the Schmid factor. The 1/2<110] unit dislocations are prevalent even for grain orientations for which the Schmid factor is higher for <101] superdislocations, though the latter are observed in favorably oriented grains. The activity of both of these systems is responsible for the higher ductility at ambient temperatures compared with Al-rich single-phase γ alloys. A higher twin density is observed in lamellar grains, but their propagation depends on the orientation and geometry of the individual γ lamellae. The increase in ductility at high temperatures correlates with increased activity of 1/2<110] dislocations (including their climb motion) and twin thickening. The role of microstructural variables on strength, ductility, and fracture are discussed. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   
6.
7.
The food-borne carcinogenic and mutagenic heterocyclic aromatic amines undergo bioactivation to the corresponding N-hydroxy (OH)-arylamines and the subsequent N-glucuronidation of these metabolites is regarded as an important detoxification reaction. In this study, the rates of glucuronidation for the N-OH derivatives of 2-amino-3-methylimidazo[4,5-f]-quinoline (IQ), 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP), 2-amino-6-methyl-dipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) by liver microsomal glucuronosyltransferase were compared to that of the proximate human urinary bladder carcinogen, N-OH-aminobiphenyl (N-OH-ABP) and the proximate rat colon carcinogen N-OH-3,2'-dimethyl-4-amino-biphenyl (N-OH-DMABP). Human liver microsomes catalyzed the uridine 5'-diphosphoglucuronic acid (UDPGA)-dependent glucuroidation of N-OH-IQ, N-OH-PhIP, N-OH-Glu-P-1 and N-OH-MeIQx at rates of 59%, 42%, 35% and 27%, respectively, of that measured for N-OH-ABP (11.5 nmol/min/mg). Rat liver microsomes also catalyzed the UDPGA-dependent glucuronidation of N-OH-PhIP, N-OH-Glu-P-1 and N-OH-IQ at rates of 30%, 20% and 10%, respectively of that measured for N-OH-DMABP (11.2 nmol/min/mg); activity towards N-OH-MeIQx was not detected. Two glucuronide(s) of N-OH-PhIP, designated I and II, were separated by HPLC. Conjugate II was found to be chromatographically and spectrally identical with a previously reported major biliary metabolite of PhIP in the rat, while conjugate I was identical with a major urinary metabolite of PhIP in the dog. Hepatic microsomes from rat, dog and human were found to catalyze the formation of both conjugates. The rat preferentially formed conjugate II (I to II ratio of 1:15), while the dog and human formed higher relative amounts of conjugate I (I to II ratio of 2.5:1.0 and 1.3:1.0 respectively). Fast atom bombardment mass spectrometry of conjugates I and II gave the corresponding molecular ions and showed nearly identical primary spectra. However, collision-induced spectra were distinct and were consistent with the identity of conjugates I and II as structural isomers. Moreover, the UV spectrum of conjugate I exhibited a lambda max at 317 nm and was essentially identical to that of N-OH-PhIP, while conjugate II was markedly different with a lambda max of 331 nm. Both conjugates were stable in 0.1 N HCl and were resistant to hydrolysis by rat, dog and human liver microsomal beta-glucuronidases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
8.
Surface characterization and protein adsorption studies were carried out on a series of additive dispersed and additive coated poly(ether urethane ureas), PEUUs, to characterize early events in the blood compatibility of these materials. A hypothesis that is based on surface hydrophilicity, surface flexibility, and adsorption media has been developed to understand the modulated adsorption of plasma proteins by PEUU additives. Electron spectroscopy for chemical analysis (ESCA) and contact angle analysis were performed on two PEUU formulation as well as on PEUU formulations modified with Methacrol 2138F (co[diisopropylaminoethyl methacrylate (DIPAM)/decyl methacrylate (DM)][3/1]) or acrylate or methacrylate polymer or copolymer analogs of Methacrol 2138F. Methacrol 2138F is a commercially used amphiphilic copolymethacrylate. ESCA showed that the PEUUs loaded with Methacrol 2138F or with its hydrophilic component, homopoly (DIPAM) (h-(DIPAM)), had a higher percentage of nitrogen at their surfaces than did the base PEUUs. Contact angle analysis also showed that the air side of PEUU formulations loaded with Methacrol 2138F were more hydrophobic than was the air side of base PEUUs when films were cast from dimethylacetamide. However, during contact angle testing, the air side of PEUU films loaded with Methacrol 2138F rapidly became more hydrophilic than did the air side of the base PEUU films. A radioimmunoassay and whole or diluted human plasma were also used to characterize the presence of the proteins fibrinogen, immunoglobulin G, factor VIII/von Willebrand factor, Hageman factor (factor XII), and albumin, on the surface of the same PEUUs as analyzed by ESCA and contact angle. The protein adsorption assay showed that PEUU films loaded or coated with Methacrol 2138F, with a copolyacrylate analog of Methacrol 2138F (co(diisopropylaminoethyl acrylate [DIPAA]/decyl acrylate [DA]) [3/1]), or with the hydrophilic polyacrylate or polymethacrylate component analogs of Methacrol 2138F (h-DIPAM or h-DIPAA) adsorbed significantly lower amounts of the proteins than did either the base PEUU formulations or the homopoly(decyl methacrylate) (h-DM) or homopoly(decyl acrylate) (h-DA) coated or loaded PEUUs.  相似文献   
9.
The efficacy of photodynamic therapy is dependent upon the optical dose rate or upon the fractionation schedule on the light. These effects are thought to be limited by the time required for oxygen diffusion from the capillaries, since this therapy can consume oxygen faster than it can be supplied to tissues distant from the blood vessels. Oxygen diffusion and consumption by metabolic and photochemical mechanisms have been modeled here to compare theoretical predictions with experimental results of varying light fractionations and delivered dose rates. The mathematics of the problem have been described in the literature, and the present study extends these calculations to allow a more direct and quantitative comparison with fractionation experiments, using both analytical and numerical arguments. The optimum fraction time was found to depend only on the intercapillary spacing and not on the intensity of irradiation or the concentration of photosensitizer. The calculations indicate that experimentally observed optimum fractionation times of 30 and 60 s correspond to a distance from capillary to cell of approximately 1 mm. These results suggest that the fractionated light irradiation experiments need careful interpretation, and some possible reasons for longer optimum fractionation times are discussed.  相似文献   
10.
The stiffness matrix for the DKT plate-bending element is formulated explicitly in a global co-ordinate system. This approach avoids transformations of stiffness, and elasticity properties for anisotropic materials, from local to global co-ordinates, which were required in previous formulations. A FORTRAN listing of the algorithm is appended for potential users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号