首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
轻工业   3篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 203 毫秒
1
1.
Heteropolysaccharides isolated from liquid cultures of Tremella species were derivatised to alditol acetates and identified by GLC against derivatised sugar standards. From the sugar profiles it was evident that all of the polysaccharides contained essentially the same sugars but in different ratios. Some of the polysaccharides contained the five carbon sugars-fucose, ribose, xylose and arabinose together with six carbon sugars-mannose, galactose and glucose. The uronic acid content of Tremella heteropolysaccharides also varied according to species. In addition, carbon source (arabinose, xylose, glucose, fructose and galactose) affected the sugar (including uronic acid content) ratio within the polysaccharides.  相似文献   
2.
Gelatinised waxy maize starch and low-methoxy pectin mixtures were solubilised/dispersed in water and cross-linked with sodium trimetaphosphate (STMP). The polysaccharides were subjected to α-amylase, β-amylase or amyloglucosidase (AMG) hydrolysis for different times, and at two starch to pectin combination ratios (3:2 and 2:3). The extent of hydrolysis by porcine pancreatic α-amylase of the cross-linked (gelatinised) starch was 54.8–58.9% in comparison with gelatinised starch (for different incubation times), corresponding to 52.3–58.9% and 51.3–55.3% of the starch in the uncross-linked (UL) 3:2 and 2:3 starch to pectin ratios (for the same hydrolysis times). Blends of individually cross-linked starch to pectin ratios (3:2 and 2:3) were hydrolysed to 66.2–67.0% and 65.4–71.8%, respectively, compared with the corresponding UL counterparts. When the gelatinised starch was incubated for 0.5–36 h with β-amylase, hydrolysis ranged from 9.2% to 26.2%, and from 5.4% to 12.2% when the starch was cross-linked (corresponding to 40.0–58.7% of the gelatinised starch). For starch to pectin ratios of 3:2 or 2:3 blended after cross-linking, or by simultaneous cross-linking, hydrolysis represented 2.3–3.4% and 0.3–0.6% for the 3:2 ratio but only 1.2–2.0% and 0–0.3% for the 2:3 ratio. Hydrolysis with AMG using a 0.1 mg ml−1 enzyme concentration caused 51.8% hydrolysis of gelatinised starch, which was lowered to 35.2% (i.e. by 68%) after cross-linking. At a higher enzyme concentration (1 mg ml−1), the comparable figures were 91.7% and 71.9% (a reduction of 78.4%). For the UL 3:2 starch to pectin ratio and 0.1 and 1 mg ml−1 enzyme concentrations, there was 27.8% and 56.5% hydrolysis of the polysaccharide which translated to 24.3% (87.4%) and 45.8% (81.1%), respectively, after cross-linking. Comparable figures for the 2:3 ratio (for the 0.1 and 1 mg ml−1 enzyme concentrations) were 20.2% and 36.5% hydrolysis of the UL samples and 18.2% (90.1%) and 32.5% (89.0%) hydrolysis, respectively, after cross-linking.  相似文献   
3.
Rheological characterisation of uncross-linked (UPS) and cross-linked (CPS) waxy maize starch with pectin was conducted to determine the influence of pectin on the properties of the starch. The viscoelastic behaviour of 5% (w/v) gel systems containing UPS and CPS polysaccharides at 25 °C was evaluated by small angle deformation oscillation rheometry. Viscoelasticity measurements of the cross-linked polysaccharides indicated that the elastic component increased after cross-linking. Among all gels studied, the properties of the CPS mixtures (ratios 2:3 and 3:2) showed quite high storage (G′) and loss (G″) moduli (compared with gels of other ratios), indicating that gels of these two particular ratios had the greatest degree of elasticity and were very well structured. The results suggest that cross-linking between starch and pectin molecules can give rise to novel rheological properties.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号