首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   600篇
  免费   0篇
化学工业   2篇
金属工艺   1篇
建筑科学   2篇
轻工业   24篇
一般工业技术   5篇
冶金工业   566篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2012年   5篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   20篇
  1998年   185篇
  1997年   92篇
  1996年   55篇
  1995年   25篇
  1994年   24篇
  1993年   32篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1989年   8篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1981年   8篇
  1980年   3篇
  1978年   2篇
  1977年   26篇
  1976年   52篇
  1975年   1篇
  1955年   1篇
排序方式: 共有600条查询结果,搜索用时 906 毫秒
1.
Levels of temporary invalidity because of catching cold were analyzed in 101 working women over two years and these women's levels of serum iron, total iron-binding capacity of the serum, transferrin saturation with iron, serum ferritin, and red cell ferritin measured. Women with stable iron reserves in the body virtually have no sick leaves because of catching cold, whereas in those with iron deficiency susceptibility to catching cold is increased, and if iron metabolism intensity in the body grows, invalidity periods are much longer. Normalization of not only iron reserves in the body, but correction of iron metabolism as well should be regarded as a factor exerting a favorable effect on body resistance to catching cold.  相似文献   
2.
3.
4.
5.
6.
The food-borne carcinogenic and mutagenic heterocyclic aromatic amines undergo bioactivation to the corresponding N-hydroxy (OH)-arylamines and the subsequent N-glucuronidation of these metabolites is regarded as an important detoxification reaction. In this study, the rates of glucuronidation for the N-OH derivatives of 2-amino-3-methylimidazo[4,5-f]-quinoline (IQ), 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP), 2-amino-6-methyl-dipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) by liver microsomal glucuronosyltransferase were compared to that of the proximate human urinary bladder carcinogen, N-OH-aminobiphenyl (N-OH-ABP) and the proximate rat colon carcinogen N-OH-3,2'-dimethyl-4-amino-biphenyl (N-OH-DMABP). Human liver microsomes catalyzed the uridine 5'-diphosphoglucuronic acid (UDPGA)-dependent glucuroidation of N-OH-IQ, N-OH-PhIP, N-OH-Glu-P-1 and N-OH-MeIQx at rates of 59%, 42%, 35% and 27%, respectively, of that measured for N-OH-ABP (11.5 nmol/min/mg). Rat liver microsomes also catalyzed the UDPGA-dependent glucuronidation of N-OH-PhIP, N-OH-Glu-P-1 and N-OH-IQ at rates of 30%, 20% and 10%, respectively of that measured for N-OH-DMABP (11.2 nmol/min/mg); activity towards N-OH-MeIQx was not detected. Two glucuronide(s) of N-OH-PhIP, designated I and II, were separated by HPLC. Conjugate II was found to be chromatographically and spectrally identical with a previously reported major biliary metabolite of PhIP in the rat, while conjugate I was identical with a major urinary metabolite of PhIP in the dog. Hepatic microsomes from rat, dog and human were found to catalyze the formation of both conjugates. The rat preferentially formed conjugate II (I to II ratio of 1:15), while the dog and human formed higher relative amounts of conjugate I (I to II ratio of 2.5:1.0 and 1.3:1.0 respectively). Fast atom bombardment mass spectrometry of conjugates I and II gave the corresponding molecular ions and showed nearly identical primary spectra. However, collision-induced spectra were distinct and were consistent with the identity of conjugates I and II as structural isomers. Moreover, the UV spectrum of conjugate I exhibited a lambda max at 317 nm and was essentially identical to that of N-OH-PhIP, while conjugate II was markedly different with a lambda max of 331 nm. Both conjugates were stable in 0.1 N HCl and were resistant to hydrolysis by rat, dog and human liver microsomal beta-glucuronidases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
7.
8.
Surface characterization and protein adsorption studies were carried out on a series of additive dispersed and additive coated poly(ether urethane ureas), PEUUs, to characterize early events in the blood compatibility of these materials. A hypothesis that is based on surface hydrophilicity, surface flexibility, and adsorption media has been developed to understand the modulated adsorption of plasma proteins by PEUU additives. Electron spectroscopy for chemical analysis (ESCA) and contact angle analysis were performed on two PEUU formulation as well as on PEUU formulations modified with Methacrol 2138F (co[diisopropylaminoethyl methacrylate (DIPAM)/decyl methacrylate (DM)][3/1]) or acrylate or methacrylate polymer or copolymer analogs of Methacrol 2138F. Methacrol 2138F is a commercially used amphiphilic copolymethacrylate. ESCA showed that the PEUUs loaded with Methacrol 2138F or with its hydrophilic component, homopoly (DIPAM) (h-(DIPAM)), had a higher percentage of nitrogen at their surfaces than did the base PEUUs. Contact angle analysis also showed that the air side of PEUU formulations loaded with Methacrol 2138F were more hydrophobic than was the air side of base PEUUs when films were cast from dimethylacetamide. However, during contact angle testing, the air side of PEUU films loaded with Methacrol 2138F rapidly became more hydrophilic than did the air side of the base PEUU films. A radioimmunoassay and whole or diluted human plasma were also used to characterize the presence of the proteins fibrinogen, immunoglobulin G, factor VIII/von Willebrand factor, Hageman factor (factor XII), and albumin, on the surface of the same PEUUs as analyzed by ESCA and contact angle. The protein adsorption assay showed that PEUU films loaded or coated with Methacrol 2138F, with a copolyacrylate analog of Methacrol 2138F (co(diisopropylaminoethyl acrylate [DIPAA]/decyl acrylate [DA]) [3/1]), or with the hydrophilic polyacrylate or polymethacrylate component analogs of Methacrol 2138F (h-DIPAM or h-DIPAA) adsorbed significantly lower amounts of the proteins than did either the base PEUU formulations or the homopoly(decyl methacrylate) (h-DM) or homopoly(decyl acrylate) (h-DA) coated or loaded PEUUs.  相似文献   
9.
The efficacy of photodynamic therapy is dependent upon the optical dose rate or upon the fractionation schedule on the light. These effects are thought to be limited by the time required for oxygen diffusion from the capillaries, since this therapy can consume oxygen faster than it can be supplied to tissues distant from the blood vessels. Oxygen diffusion and consumption by metabolic and photochemical mechanisms have been modeled here to compare theoretical predictions with experimental results of varying light fractionations and delivered dose rates. The mathematics of the problem have been described in the literature, and the present study extends these calculations to allow a more direct and quantitative comparison with fractionation experiments, using both analytical and numerical arguments. The optimum fraction time was found to depend only on the intercapillary spacing and not on the intensity of irradiation or the concentration of photosensitizer. The calculations indicate that experimentally observed optimum fractionation times of 30 and 60 s correspond to a distance from capillary to cell of approximately 1 mm. These results suggest that the fractionated light irradiation experiments need careful interpretation, and some possible reasons for longer optimum fractionation times are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号