首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学工业   4篇
轻工业   1篇
一般工业技术   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2005年   1篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
The effects of submicron core‐shell rubber (CSR) particles, nanoclay fillers, and molding parameters on the mechanical properties and cell structure of injection‐molded microcellular polyamide‐6 (PA6) composites were studied. The experimental results of PA6 nanocomposites with 5.0 and 7.5 wt% nanoclay loadings and of CSR‐modified PA6 composites with 0.5 and 3.1 wt% CSR loadings were compared to their neat resin counterparts. This study found that nanoclay was more efficient in promoting a smaller cell size, larger cell density, and higher tensile strength for microcellular injection molding parts. A higher nanoclay loading led to more brittle behavior for microcellular parts. It was found that a proper amount of CSR particles could be added to the microcellular injection‐molded PA6 to reduce the cell size, increase the cell density, and enhance the toughness of the molded part. However, CSR particles were less effective cell nucleation agents as compared to nanoclay for producing desirable cell structures, and a higher CSR loading was found to have diminishing effects on the process and on the properties of the parts. POLYM. ENG. SCI., 45:773–788, 2005. © 2005 Society of Plastics Engineers  相似文献   
2.
A simple surfactant-free electrochemical method is proposed for the preparation of magnetite nanoparticles using iron as the anode and plain water as the electrolyte. This study observed the effects of certain parameters on the formation of magnetite nanoparticles and their mechanism in the system, including the role of OH? ions, the distance between electrodes and current density. We found that OH? ions play an important role in the formation of magnetite nanoparticles. Particle size can be controlled by adjusting the current density and the distance between electrodes. Particle size increases by increasing the current density and by decreasing the distance between electrodes. Particle formation cannot be favored when the distance between electrodes is larger than a critical value. The magnetite nanoparticles produced by this method are nearly spherical with a mean size ranging from 10 to 30 nm depending on the experimental conditions. They exhibit ferromagnetic properties with a coercivity ranging from 140 to 295 Oe and a saturation magnetization ranging from 60 to 70 emu g?1, which is lower than that of the corresponding bulk Fe3O4 (92 emu g?1). This simple method appears to be promising as a synthetic route to producing magnetite nanoparticles.  相似文献   
3.
The effects of gas flow rate on particle formation and film deposition during the preparation of silica thin film using a TEOS/O2 plasma were investigated. Particle formation and growth are suppressed with increasing gas flow rates. The film deposition rate increases with increasing gas flow rate, reaches a maximum value, and eventually decreases again. However, the uniformity of the film tends to degrade at high gas flow rates. At a high gas flow rate, some particles trapped in the sheath near the grounded electrode pass through the sheath to reach the substrate and are then embedded in the growing film. A self-consistent sheath model combined with particle force balance based on charge fluctuation was developed to explain these experimental findings qualitatively. The model reveals that charge fluctuation is a key factor for the particle to overcome the potential barrier of the negatively charged particles to pass through the sheath, eventually reaching the substrate. The model further shows that the probability of a particle being deposited on the substrate is higher for increased gas flow rates, which correctly predicts the experimentally observed trend.  相似文献   
4.
The particle formation mechanism of hydroxyapatite precursor containing two components, Ca(OOCCH3)2 and (NH4)2HPO4 with a ratio of Ca/P = 1.67, in a spray pyrolysis process has been studied by computational fluid dynamics (CFD) simulation on the transfer of heat and mass from droplets to the surrounding media. The focus included the evaporation of the solvent in the droplets, a second evaporation due to crust formation, the decomposition reaction of each component of the precursor, and a solid-state reaction that included the kinetic parameters of the precursor regarding its two components that formed the hydroxyapatite product. The rate of evaporation and the reacted fraction of the precursor both increased with temperature. The predicted average size of the hydroxyapatite particles agreed well with the experimental results. Therefore, the selected models were also suitable for predicting the average size of particles that contain two components in the precursor solution.  相似文献   
5.
This work discusses the extraction of lycopene from tomato peel by-product containing tomato seed using supercritical carbon dioxide. The presence of tomato seed in the peel by-product improved the yield of extracted lycopene. Extraction was carried out at temperatures of 70-90 °C, pressures of 20-40 MPa, a particle size of 1.05 ± 0.10 mm and flow rates of 2-4 mL/min of CO2 for 180 min extraction time. Oil from tomato seed was extracted under similar operating conditions and analyzed using GC-MS and GC-FID, while carotenoids extracted were analyzed by HPLC. The optimum operating condition to extract lycopene, under which 56% of lycopene was extracted, was found to be 90 °C, 40 MPa, and a ratio of tomato peel to seed of 37/63. The presence of tomato seed oil helped to improve the recovery of lycopene from 18% to 56%. The concentration of lycopene in supercritical carbon dioxide as a function of density at various temperatures was determined.  相似文献   
6.
7.
In this paper, we systematically report the synthesis of mesoporous silica xerogels in high purity from bagasse ash. The bagasse ash was chosen as the raw material due to its availability and low-price, and environmental considerations also were important. Silica was extracted as sodium silicate from bagasse ash using NaOH solution. The sodium silicate was then reacted with HCl to produce silica gel. To produce high-purity silica xerogels, three different purification methods were investigated, i.e., acid treatment, ion exchange treatment, and washing with de-mineralized water. We were able to produce high-purity silica (>99 wt.%) by washing the produced gels with either de-mineralized water or with ion exchange resin. The specific surface area of the prepared silica xerogels ranged from 69 to 152 m2 g?1 and the pore volume ranged from 0.059 to 0.137 cm3 g?1. The pore radii were 3.2–3.4 nm, which indicated that the silica xerogels was mesoporous. From the adsorption characterization, it was obvious that adsorptive capacity was better for high-purity silica xerogels compared with low-purity. The maximum adsorption capacity by high-purity silica xerogel was 0.18 g-H2O/g-SiO2. Finally, we demonstrate the potential of bagasse ash for mesoporous silica production with its excellent adsorptive capacity that makes it beneficial as an environmental solution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号