首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
水利工程   3篇
冶金工业   1篇
  2021年   2篇
  2017年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.

Combined simulation–optimization (CSO) schemes are common in the literature to solve different groundwater management problems, and CSO is particularly well-established in the coastal aquifer management literature. However, with a few exceptions, nearly all previous studies have employed the CSO approach to derive static groundwater management plans that remain unchanged during the entire management period, consequently overlooking the possible positive impacts of dynamic strategies. Dynamic strategies involve division of the planning time interval into several subintervals or periods, and adoption of revised decisions during each period based on the most recent knowledge of the groundwater system and its associated uncertainties. Problem structuring and computational challenges seem to be the main factors preventing the widespread implementation of dynamic strategies in groundwater applications. The objective of this study is to address these challenges by introducing a novel probabilistic Multiperiod CSO approach for dynamic groundwater management. This includes reformulation of the groundwater management problem so that it can be adapted to the multiperiod CSO approach, and subsequent employment of polynomial chaos expansion-based stochastic dynamic programming to obtain optimal dynamic strategies. The proposed approach is employed to provide sustainable solutions for a coastal aquifer storage and recovery facility in Oman, considering the effect of natural recharge uncertainty. It is revealed that the proposed dynamic approach results in an improved performance by taking advantage of system variations, allowing for increased groundwater abstraction, injection and hence monetary benefit compared to the commonly used static optimization approach.

  相似文献   
2.
Saturated hydraulic conductivity and wetting front pressure head (as soil properties) on an abrupt Green-Ampt front are assumed to increase and decrease with depth of a porous heterogeneous soil subject to a constant ponding or infiltration-evaporation depleted ponding on the surface. The corresponding Cauchy problem for a nonlinear ordinary differential equation describing the wetting front propagation in the soil profile is solved by computer algebra routines. Sensitivity of the cumulative infiltration to variation of hydraulic conductivity and capillarity is studied. A concave-convex infiltration graph is obtained for some values of parameters of the assumed exponential growth/decay of conductivity/capillarity. Texture of soil samples collected from a pedon is used for calculation of conductivity from a pedotransfer function. Synthesis of heterogeneity resulting in a specified front dynamics is discussed.  相似文献   
3.

Subsurface dams, strongly advocated in the 1992 United Nations Agenda-21, have been widely studied to increase groundwater storage capacity. However, an optimal allocation of augmented water with the construction of the subsurface dams to compensate for the water shortage during dry periods has not so far been investigated. This study, therefore, presents a risk-based simulation–optimization framework to determine optimal water allocation with subsurface dams, which minimizes the risk of water shortage in different climatic conditions. The developed framework was evaluated in Al-Aswad falaj, an ancient water supply system in which a gently sloping underground channel was dug to convey water from an aquifer via the gravity force to the surface for irrigation of downstream agricultural zones. The groundwater dynamics were modeled using MODFLOW UnStructured-Grid. The data of boreholes were used to generate a three-dimensional stratigraphic model, which was used to define materials and elevations of five-layer grid cells. The validated groundwater model was employed to assess the effects of the subsurface dam on the discharge of the falaj. A Conditional Value-at-Risk optimization model was also developed to minimize the risk of water shortage for the augmented discharge on downstream agricultural zones. Results show that discharge of the falaj is significantly augmented with a long-term average increase of 46.51%. Moreover, it was found that the developed framework decreases the water shortage percentage in 5% of the worst cases from 87%, 75%, and 32% to 53%, 32%, and 0% under the current and augmented discharge in dry, normal, and wet periods, respectively.

  相似文献   
4.
Aquifer recharge rates and patterns are often uncertain, especially in arid areas due to sporadic and erratic rainfall. Therefore, determining the optimal groundwater abstraction using classical approaches such as Monte Carlo Simulation (MCS) requires a large number of groundwater simulations and exorbitant computational efforts. The problem becomes even more complex and time consuming for regional coastal aquifers whose domains must be discretized using high-resolution meshes. In fact, even fast evolutionary multi-objective optimization techniques generally require a large number of simulations to determine the Pareto-front among the objectives. This study explores the performance of a Decision Tree (DT) approach for the generation of the Pareto optimal solutions of groundwater extraction. This paper applies the DTs for the optimal management of the Al-Khoud coastal aquifer in Oman. The learning process of the developed DT-based model uses the output of a numerical simulation model to assess the aquifer response based on different abstraction policies. The trained DT network then utilizes the NSGA-II to determine the Pareto-optimal solutions. The simulation show that the general flux pattern in the study area is toward the sea and the hydraulic head following a similar pattern in both best and worst recharging scenarios downstream of the studied recharging dam. Statistical tests showed a good correlation between the DT-based and simulation-based results and demonstrate the capability of the DT approach to obtain high-quality solutions by incorporating a large number of recharge scenarios. Moreover, the required runtime of the DT-based approach is extremely low (5 min) compared to that of the simulation-based method (several days). This means that including additional Monte-Carlo simulations can be readily done in few minutes using the obtained DTs, instead of the long computational time needed by the simulation-based approach.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号