首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
电工技术   1篇
化学工业   17篇
能源动力   8篇
水利工程   1篇
一般工业技术   5篇
  2021年   1篇
  2018年   2篇
  2016年   1篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
Alumina-supported vanadium oxide, VOx/Al2O3, and binary vanadium–antimony oxides, VSbOx/Al2O3, have been tested in the ethylbenzene dehydrogenation with carbon dioxide and characterized by SBET, X-ray diffraction, X-ray photoelectron spectroscopy, hydrogen temperature-programmed reduction and CO2 pulse methods. VSbOx/Al2O3 exhibited enhanced catalytic activity and especially on-stream stability compared to VOx/Al2O3 catalyst. Incorporation of antimony into VOx/Al2O3 increased dispersion of active VOx species, enhanced redox properties of the systems and formed a new mixed vanadium–antimony oxide phase in the most catalytically efficient V0.43Sb0.57Ox/Al2O3 system.  相似文献   
2.
TiO2 supported on SiO2 surface is effective on the recovery of photocatalyst, morphological control, and coating on the substrate. Furthermore, it shows much higher photocatalytic activity than pure TiO2. The silica support is quite influential on the surface properties of TiO2 supported on SiO2. The enhanced photocatalytic activity of TiO2–SiO2 could be explained by the effects of surface area, adsorption, band-gap energy and local structure. However, it is difficult to say which one is the most important factor responsible for the photocatalytic property of TiO2–SiO2. For example, the reduction of particle size could effect on both of the surface area and band-gap energy. And, Ti–O–Si bonds could modify the band-gap energy and local structure. Therefore, the photocatalytic properties of TiO2–SiO2 should be expressed by sum of many factors such as surface area, adsorption, band-gap energy and local structure.  相似文献   
3.
The durability of PEMFCs is one of the most important issues for application in automotive vehicles with a repeated start-up and shut-down system. The understanding of degradation phenomena such as causes, mechanisms and influence of working condition is essential to improving the performance and lifetime of PEMFC. We conducted on/off cyclic operation in a single cell configuration with ultra purity nitrogen gas to investigate the physical degradation of membrane electrode assembly (MEA). After on/off cycle operation for 100,000 cycles under different humid condition, the characteristics of the MEAs were examined by in situ and ex situ analyses techniques. The physical degradation of MEA by on/off cycling led to a change in the membrane-electrode interfacial structure, which is mainly attributed to the loss of cell performance.  相似文献   
4.
The ethylbenzene separation from mixed xylene is one of the critical issues in the chemical industry. In this study, separation of ethylbenzene from ternary xylene mixtures system [ethylbenzene (EB), para-xylene (PX) and meta-xylene (MX)] was performed using a nano-zeolite coated tubular membrane system. Nano-zeolite membranes with different Si/Al ratios (Si/Al = 30, 100 and ∞) were prepared by a microwave hydrothermal method and the separation performance was compared. MFI-type nano-zeolite membranes were synthesized on alumina tubes from the randomly oriented seed layers by dip coating and functional coating using 3-chloropropyltrimethoxysilane, respectively. After the microwave-assisted secondary growth, it was observed that thinner layers of nano-zeolites were prepared by functional coating (3–4 μm) compared to the typical dip coating (6–8 μm). Ethylbenzene separation tests were performed using a comparatively high EB-containing ternary mixture feed (EB/PX/MX = 80/5/15 molar ratio). The silicalite-1 (Si/Al ratio = ∞) membrane with a functional layer shows the best ethylbenzene separation factor of 3.11 from the high EB-containing ternary mixture feed (ethylbenzene flux: 1,010.6 mol/m2 s Pa ×10?10).  相似文献   
5.
A PAN-4A composite ion exchanger containing about 80% 4A powder was prepared to remove strontium and cesium ions from acidic solution. The SEM image of the fracture of composite bead showed that zeolite 4A powder was dispersed homogenously and the pores were well formed. The mean pore size of composite bead was 0.14 μm and its porosity was about 74%, which is much higher in comparison with the existing inorganic adsorbent beads. The acid and radiation stability tests showed that PAN-4A was stable against acid solution higher than pH 2 and radiation dose less than 1.89×108 rad, respectively. Ion exchange tests showed that the PAN-4A was selective for Sr ion. The distribution coefficients of PAN-4A for Sr and Cs ions at pH 2 were 2×104 mL/g and 280 mL/g, respectively. The ion exchange capacities (qs) of PAN-4A for Sr and Cs ions at pH 2, which are modeled by Dubinin-Polanyi equation, were 3.92 meq/g and 2.47 meq/g, respectively.  相似文献   
6.
Preparation of mesoporous silica fiber matrix for VOC removal   总被引:3,自引:0,他引:3  
A novel method for the preparation of the mesoporous silica fiber matrix was introduced for a removal of volatile organic compounds (VOCs). Paper making technology was applied to make a sheet of mesoporous silica fiber matrix. Reinforcing the mesoporous silica fiber with the ceramic fibers (50 wt.%) increased the mechanical strength of the matrix. Mesoporous silica fibers using TMOS (tetramethoxysilane) as a silica source and CTAC (cetyltrimethyl-ammoniumchloride) as a surfactant were drawn by the spinning method. The spinning process increased both the crystallinity and the fraction of mesopores (1.9 nm) of the fiber. As the spinning rate was increased both the crystallinity and the specific area of the mesoporous silica fiber increased, but the diameter of fiber decreased. We could control the size and morphology of mesoporous silica fiber matrix by changing the shape of substrates. This leads to easy fabrication of honeycomb-structured adsorbent which can be used for the VOC removal.  相似文献   
7.
PSA [poly-(styrene-methyl acrylic acid)] latex particle has been taken into account as template material in SiO2 hollow spheres preparation. TiO2-doped SiO2 hollow spheres were obtained by using the appropriate amount of Ti(SO4)2 solution on SiO2 hollow spheres. The photodecomposition of the MB (methylene blue) was evaluated on these TiO2-doped SiO2 hollow spheres under UV light irradiation. The catalyst samples were characterized by XRD, UV-DRS, SEM and BET. A TiO2-doped SiO2 hollow sphere has shown higher surface area in comparison with pure TiO2 hollow spheres. The 40 wt% TiO2-doped SiO2 hollow sphere has been found as the most active catalyst compared with the others in the process of photodecomposition of MB (methylene blue). The BET surface area of this sample was found to be 377.6 m2g−1. The photodegradation rate of MB using the TiO2-doped SiO2 catalyst was much higher than that of pure TiO2 hollow spheres.  相似文献   
8.
An ammoxidation of m-xylene was evaluated in a fixed-bed reactor using V2O5 on various oxides. Catalysts were prepared by wet impregnation method. At first, the loading of V2O5 was varied from 5 wt% to 20 wt% on γ-Al2O3 support to estimate the most effective amount of V2O5. Second, the effect of catalyst supports was examined at 10 wt% loading of V2O5. V2O5/TiO2 and V2O5/SiO2 catalysts were employed to compare the ammoxidation reaction with V2O5/γ-Al2O3. Most catalytic activity was observed when γ-Al2O3 was used as a support. Careful characterization was followed by physicochemical techniques, such as BET measurement, X-ray diffraction (XRD), Raman spectroscopy and temperature-programmed reduction (TPR). The results provided the clue that monolayer V2O5 was favorably dispersed on the surface of γ-Al2O3 up to 10 wt%, which led to the highest yield of isophthalonitrile (IPN).  相似文献   
9.
The ternary system SiO2-P2O5-ZrO2 electrolyte and phosphotungstic acid (PWA) doped SiO2-P2O5-ZrO2 electrolyte were prepared for intermediate temperature fuel cell by using sol-gel technique. These silica-based proton conductors were confirmed to be non-crystalline structure without phase separation and good thermal stability by XRD and TG/DTA analysis. The doped PWA was found to be stabilized within the silica matrix and to enhance the proton conductivity. The proton conductivities of SiO2-P2O5-ZrO2 and SiO2-P2O5-ZrO2-PWA electrolytes showed 3.3×10−5 and 1.8×10−3 S/cm at 90 °C, respectively, and the cell performance of SiO2-P2O5-ZrO2-PWA electrolyte was obtained as 0.02–0.25 mA/cm2 at 300 °C under humid condition.  相似文献   
10.
A platinum nanoparticle-reduced graphene oxide (Pt-RGO) nanohybrid for proton exchange membrane fuel cell (PEMFC) application was successfully prepared. The Pt nanoparticles (Pt NPs) were deposited onto chemically converted graphene nanosheets via ethylene glycol (EG) reduction. According to the powder X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) analysis, the face-centered cubic Pt NPs (3-5 nm in diameter) were homogeneously dispersed on the RGO nanosheets. The electrochemically active surface area and PEMFC power density of the Pt-RGO nanohybrid were determined to be 33.26 m2/g and 480 mW/cm2 (maximum values), respectively, at 75 degrees C and at a relative humidity (RH) of 100% in a single-cell test experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号