首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
石油天然气   2篇
  2013年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
ABSTRACT

Asphaltene, resins and paraffin waxes, their mutual interactions and their influence on the stability of water-in-oil emulsions have been studied. 20 wt % paraffin wax dissolved in decalin was used to model the waxy crude oil. Asphaltene and resins separated from a crude oil were used to stabilize the water-in-oil emulsions. Synthetic formation water was utilized as the aqueous phase of the emulsion. The emulsion stability increased with increasing the concentration of asphaltene with a subsequent decrease in the average particle size distribution of the emulsion. Resins alone are not capable of stabilizing the emulsion, however, in the presence of asphaltene they form very stable emulsions. Dynamic viscosity and pour point measurements provided evidence for resins-paraffin waxes interactions. Asphaltene in the form of solid aggregates form suitable nuclei for the wax crystallites to build over with a mechanism similar to that of paraffin wax crystal-modifiers. As asphaltene are polar in nature they are derived at the oil/water interface which was proved by the ability of asphaltene to reduce oil/water interfacial tension. Consequently, nucleation of the wax crystallites by asphaltene and resins at the interface will add to the thickness of the oil-water interfacial film and hence increase the stability of the emulsion.  相似文献   
2.
Asphaltene, resins and paraffin waxes, their mutual interactions and their influence on the stability of water-in-oil emulsions have been studied. 20 wt % paraffin wax dissolved in decalin was used to model the waxy crude oil. Asphaltene and resins separated from a crude oil were used to stabilize the water-in-oil emulsions. Synthetic formation water was utilized as the aqueous phase of the emulsion. The emulsion stability increased with increasing the concentration of asphaltene with a subsequent decrease in the average particle size distribution of the emulsion. Resins alone are not capable of stabilizing the emulsion, however, in the presence of asphaltene they form very stable emulsions. Dynamic viscosity and pour point measurements provided evidence for resins-paraffin waxes interactions. Asphaltene in the form of solid aggregates form suitable nuclei for the wax crystallites to build over with a mechanism similar to that of paraffin wax crystal-modifiers. As asphaltene are polar in nature they are derived at the oil/water interface which was proved by the ability of asphaltene to reduce oil/water interfacial tension. Consequently, nucleation of the wax crystallites by asphaltene and resins at the interface will add to the thickness of the oil-water interfacial film and hence increase the stability of the emulsion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号