首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
无线电   2篇
  2021年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Ag nanoparticles(NPs) were introduced into Er3+/Tm3+ codoped tellurite glasses prepared using melt-quenching and heat-treated techniques. The glass samples were characterized by the differential scanning calorimeter(DSC), X-ray diffraction(XRD), transmission electron microscopy(TEM) and photoluminescence to reveal the Ag NPs induced broadband near-infrared band emission enhancement of Er3+/Tm3+ ions. The studied glasses possessed good thermal stability with△T larger than 137 ℃. For glass sample heat-treated at 360 ℃ for 6 h, the nucleated Ag NPs in near-spherical shape with an average diameter about 6.5 nm dispersed in the glass matrix. Under the excitation of 808 nm laser diode(LD), the broadband near-infrared fluorescence emission extending from 1 350 nm to 1 620 nm, owing to the combined contributions from the 3H43F4 transition of Tm3+ at 1.47 μm band and the 4I13/24I15/2 transition of Er3+ at 1.53 μm band, improved significantly with the introduction of Ag NPs, which is mainly attributed to the increased local electric field. The present results indicate that Er3+/Tm3+/Ag NPs codoped tellurite glass with good thermal stability is a promising glass material for broadband fiber amplifiers of WDM transmission systems.  相似文献   
2.
In this work, Pr3+ was introduced into Nd3+-doped tellurite glass with composition TeO2-ZnO-Na2O-Nb2O5 to achieve broadband near-infrared emission. A broadband fluorescence emission ranging from 1 250 nm to 1 530 nm was obtained under the excitation of 808 nm LD, which is contributed by the Pr3+:1D2 →1G4 and Nd3+:4F3/2→4I13/2 transitions emitting the fluorescence located at around 1.47 µm and 1.35 µm bands, respectively. The 1.47 µm band fluorescence of Pr3+ is attributed to the energy transfer from Nd3+ to Pr3+ ions and the energy transfer mechanism was further investigated by calculating relevant micro-parameter and phonon contribution ratio. Meanwhile, the studied tellurite glass possesses good thermal stability. The present work indicates that Pr3+/Nd3+ codoped tellurite glass is an excellent gain medium for potential O+E+S-band broad optical amplifiers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号