首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
无线电   3篇
自动化技术   1篇
  2006年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
We consider the problem of providing per-customer service guarantees in a high-speed packet switch typically situated at the edge between a set of customers and a service provider network. As basic requirements, the switch should be scalable to high speeds per port, a large number of ports, and a large number of customers (macroflows) with independent guarantees. Existing scalable solutions are based on virtual output queuing, which is computationally complex when required to provide service guarantees for a large number of macroflows. We present a novel architecture for packet switching that provides support for such service guarantees. A cost-effective fabric with small external speedup is combined with a feedback mechanism that enables the fabric to be virtually lossless, thus avoiding packet drops indiscriminate of macroflows' behavior. Through analysis and simulation, we show that this architecture provides accurate support for service guarantees, has low computational complexity, and is scalable to very high port speeds.  相似文献   
2.
Theories and models for Internet quality of service   总被引:8,自引:0,他引:8  
We survey advances in theories and models for Internet quality of service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also discussed. We then turn our attention to statistical performance guarantees and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some QoS differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support  相似文献   
3.
We present algorithms for flow admission control at an earliest deadline first link scheduler when the flows are characterized by piecewise linear traffic envelopes. We show that the algorithms have very low computational complexity and, thus, practical applicability. The complexity can be further decreased by introducing the notion of discretized admission control. Through discretization, the range of positions for the end points of linear segments of the traffic envelopes is restricted to a finite set. Simulation experiments show that discretized admission control can lead to two orders of magnitude decrease in the amount of computation needed to make admission control decisions over that incurred when using exact (nondiscrete) admission control, with the additional benefit that this amount of computation no longer depends on the number of flows. We examine the relative performance degradation (in terms of the number of flows admitted) incurred by the discretization and find that it is small  相似文献   
4.
The steady-state performance of a bulk transfer TCP flow (i.e., a flow with a large amount of data to send, such as FTP transfers) may be characterized by the send rate, which is the amount of data sent by the sender in unit time. In this paper we develop a simple analytic characterization of the steady-state send rate as a function of loss rate and round trip time (RTT) for a bulk transfer TCP flow. Unlike the models of Lakshman and Madhow (see IEE/ACM Trans. Networking, vol.5, p.336-50, 1997), Mahdavi and Floyd (1997), Mathis, Semke, Mahdavi and Ott (see Comput. Commun. Rev., vol.27, no.3, 1997) and by by Ott et al., our model captures not only the behavior of the fast retransmit mechanism but also the effect of the time-out mechanism. Our measurements suggest that this latter behavior is important from a modeling perspective, as almost all of our TCP traces contained more time-out events than fast retransmit events. Our measurements demonstrate that our model is able to more accurately predict TCP send rate and is accurate over a wider range of loss rates. We also present a simple extension of our model to compute the throughput of a bulk transfer TCP flow, which is defined as the amount of data received by the receiver in unit time  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号