首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
无线电   3篇
冶金工业   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 328 毫秒
1
1.
This paper gives a first comparison of specific absorption rate (SAR) induced in a child-sized (CS) head and an adult head using a dual-band mobile phone. In the second study, the visible human head is considered and comparison of SAR induced in a CS or child-like (CL) head and an adult head using a dual-band mobile phone is given. All the peaks of average SAR over a mass of 10 and 1 g in the head and the power budget are determined in the two comparisons using the finite-difference time-domain method. The differences between the results for adult and CS or CL heads are given at 900 and 1800 MHz. No important differences are noted for the peak SAR averaged over 10 g (SAR10 g), between the two adult head models, as well as between the two child head models. The peak SAR10 g in the brain of the CS or CL head is slightly more significant than that for the adult one.  相似文献   
2.
The assessment of the exposure to electromagnetic waves is nowadays a key question. Dealing with the relationship between exposure and incident field, most of previous investigations have been performed with a single plane wave. Realistic exposure in the far field can be modeled as multiple plane waves with random direction of arrival, random amplitude, and random phase. This paper, based on numerical investigations, studies the whole body specific absorption rate (SAR) linked to the exposure induced by five random plane waves having uniformly distributed angles of arrival in the horizontal plane, log-normal distributed amplitudes, and uniformly distributed phases. A first result shows that this random heterogeneous exposure generates maximal variations of ??25% for the whole body specific absorption. An important observation is that the exposure to a single plane wave arriving face to the body, used for the guidelines, does not constitute the worst case. We propose a surrogate model to assess the distribution of the whole body SAR in the case of an exposure to multiple plane waves. For a sample of 30 values of whole body SAR induced by five plane waves at 2.4?GHz, this simple approach, considering the resulting SAR as the sum of the SAR induced by each isolated plane wave, leads to an estimated distribution of whole body SAR following the real distribution with a p value of 76% according to the Kolmogorov statistical test.  相似文献   
3.
Deformation behavior and damage evaluation of a new composite steel has been investigated by means of in situ three‐point bend tests in the scanning electron microscope. The titanium diboride (TiB2)‐reinforced steel composite is produced by in situ precipitation of the TiB2 particles during eutectic solidification. This production process developed by ArcelorMittal leads to a steel composite with a significant increase in specific stiffness (>20%), and good strength/ductility compromise. The microstructures obtained consist of primary TiB2 crystals surrounded by a eutectic mixture of ferrite and TiB2 particles. The primary mode of damage is particle fracture and inhomogeneous plastic deformation in the matrix. In contrast with other production process, particle fracture was more common than interfacial debonding indicating that interfacial strength is not the limiting factor in damage accumulation and fracture in this composite. Crack growth occurred by particle fracture ahead of the crack tip, producing large microvoids, which then link up to the growing crack by ductile failure of the remaining matrix ligaments. The results suggest also that the cracks tended to avoid direct particle interactions.  相似文献   
4.
Wireless systems usage has evolved, for instance, with the recent increase in the use of a hands-free kit, the mobile phone is used more and more in a body-worn position. Therefore, to check the compliance to the international limits, new methods have to be developed. In this study, we analyze the relevance of using the equivalent head liquid for the biological structure of organs that are different from that of the head. This paper compares the Specific Absorption Rate (SAR) values assessed using simulations in a flat phantom filled with the liquid used to test the compliance of mobile phone close to the head to those values obtained using a multilayer model representing the tissues of the trunk. The multilayer structures are derived from the anatomical analysis of the visible human model and corresponding to reasonable positions of a handset in a body-worn configuration. The employed sources are half-wavelength dipoles placed at different distances from those structures and operating at frequencies between 300 MHz and 6 GHz.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号