首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
无线电   17篇
自动化技术   3篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   5篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
In this paper, an energy balanced model (EBM) for lifetime maximization for a randomly distributed sensor network is proposed. The lifetime of a sensor network depends on the rate of energy depletion caused by multiple factors, such as load imbalance, sensor deployment distribution, scheduling, transmission power control, and routing. Therefore, in this work, we have developed a mathematical model for analysis of load imbalance under uniform and accumulated data flow. Based on this analysis, we developed a model to rationalize energy distribution among the sensors for enhancing the lifetime of the network. To realize the proposed EBM, three algorithms—annulus formation, connectivity ensured routing and coverage preserved scheduling have been proposed. The proposed model has been simulated in ns-2 and results are compared with Energy-Balanced Transmission Policy and Energy Balancing and unequal Clustering Algorithm. Lifetime has been measured in terms of the time duration for which the network provides satisfactory level of coverage and data delivery ratio. EBM outperform both the existing models. In our model the variance of residual energy distribution among the sensors is lower than other two models. This validated the essence of energy rationalization hypothesized by our model.  相似文献   
2.
Multipath routing is a burning issue in mobile ad hoc network due to its various advantages over single path routing. Some of these advantages are load balancing, bandwidth aggregation, and fault tolerance. Multipath routing means multiple paths exist between source and destination pair. Many works discussed in section 2 addressed queuing delays, but none of them suggested queuing delay for multiple path deliveries of data in mobile ad hoc network context. In this paper, we have designed a mathematical model to compute delay and throughput for multipath. Our model follow the network of M/M/1 queues, and we have applied Burke’s theorem to calculate the queuing delay of the packet in mobile network scenario. This model can be used to estimate delay and throughput of an individual path. Further, through the analysis the best path for data delivery out of available multiple paths as well as the multipath path can be used simultaneously for data delivery to the destination. Simulation result shows that splitted traffic multiple paths outperform splitted traffic. Therefore, our model is useful for design and analysis of ad hoc network. The simulation work has been carried out in Qualnet simulator.  相似文献   
3.
4.
In emerging sensor network applications, localization in wireless sensor network is a recent area of research. Requirement of its applications and availability of resources need feasible localization algorithm with lower cost and higher accuracy. In this paper, we propose an Advanced DV-Hop localization algorithm that reduces the localization error without requiring additional hardware and computational costs. The proposed algorithm uses the hop-size of the anchor (which knows its location) node, from which unknown node measures the distance. In the third step of Advanced DV-Hop algorithm, inherent error in the estimated distance between anchor and unknown node is reduced. To improve the localization accuracy, we use weighted least square algorithm. Furthermore, location of unknown nodes is refined by using extraneous information obtained by solving the equations. By mathematical analysis, we prove that Advanced DV-Hop algorithm has lesser correction factor in the distance between anchor and the unknown node compared with DV-Hop algorithm, improved DV-Hop algorithm (Chen et al. 2008) and improved DV-Hop algorithm (Chen et al. in IEICE Trans Fundam E91-A(8), 2008), which is cause of better location accuracy. Simulation results show that the performance of our proposed algorithm is superior to DV-Hop algorithm and improved DV-Hop algorithms in all considered scenarios.  相似文献   
5.
Efficient transmission of data for reducing collisions in sensor network is the most significant way of enhancing the network performance and achieving lifetime maximization. In this paper, we have proposed a novel data retransmission strategy for unsuccessfully transmitted packets in case of uniform and variable data rate applications. For applications with uniform data rate, a fixed number of retransmission attempts are assigned to each packet and the retransmission probability gradually reduces according to 1-Truncated Geometric Distribution after every collision. For variable data rate applications with normalized data rate $N$ , our strategy reduces the priority of the collided packets using $N$ -Truncated Geometric Distribution. After fixed unsuccessful attempts with first priority, the packets are retransmitted with reduced priority so as to avoid engaging of network resources for long duration. Moreover, our both strategies aim to improve the usual retransmission mechanism of Standard ZigBee/IEEE 802.15.4 by replacing it with our innovated scheme. The simulation shows that our proposed retransmission technique outperforms the Standard ZigBee with GTS in terms of average energy consumption, network throughput, average number of retransmission attempts and network performance.  相似文献   
6.
Multimedia Tools and Applications - Automatic text summarization is an exertion of contriving the abridged form of a text document covering salient knowledge. Numerous statistical, linguistic,...  相似文献   
7.
Wireless Personal Communications - In Heterogeneous Wireless Networks (HWN), seamless Vertical Handoff (VHO) to the best available network is significant in providing Quality of Experience to the...  相似文献   
8.
Kaushik  Abhinesh  Lobiyal  D. K.  Kumar  Shrawan 《Wireless Networks》2021,27(3):1801-1819

DV-Hop, a range-free localization algorithm, has been one of the most popular localization algorithm. It is easy and inexpensive to implement. Therefore, in the literature, many improved variants of this algorithm exist. However, poor location accuracy and higher power consumption by DV-Hop algorithm always open new avenues for research on this algorithm and makes it a favorite among the researchers. In this paper, we have proposed an Improved 3-Dimensional DV-Hop algorithm based on the information of nearby nodes (I3D-DVLAIN). In the algorithm, by calculating hopsize at the unknown nodes, we eliminate one communication among the nodes, which reduces power consumption in the network. The hopsize calculation and location estimation is done by using only the nearby anchor nodes, which minimizes the network usage and decreases the computational effort. For the selection of nearby anchor nodes, we introduce a new method. Further, for localization, a novel method is used for solving the system of distance equations that restricts propagation of inherent error in the distance and increases localization accuracy. Furthermore, by mathematically analyzing the propagation of error in solving the system of equations, we prove the superiority of I3D-DVLAIN over other compared algorithms. The results obtained through simulation and complexity analysis of the computation and communication further strengthens our observations about the superiority of the proposed algorithm.

  相似文献   
9.
Considering energy consumption, hardware requirements, and the need of high localization accuracy, we proposed a power efficient range-free localization algorithm for wireless sensor networks. In the proposed algorithm, anchor node communicates to unknown nodes only one time by which anchor nodes inform about their coordinates to unknown nodes. By calculating hop-size of anchor nodes at unknown nodes one complete communication between anchor node and unknown node is eliminated which drastically reduce the energy consumption of nodes. Further, unknown node refines estimated hop-size for better estimation of distance from the anchor nodes. Moreover, using average hop-size of anchor nodes, unknown node calculates distance from all anchor nodes. To reduce error propagation, involved in solving for location of unknown node, a new procedure is adopted. Further, unknown node upgrades its location by exploiting the obtained information in solving the system of equations. In mathematical analysis we prove that proposed algorithm has lesser propagation error than distance vector-hop (DV-Hop) and other considered improved DV-Hop algorithms. Simulation experiments show that our proposed algorithm has better localization performance, and is more computationally efficient than DV-Hop and other compared improved DV-Hop algorithms.  相似文献   
10.
The quality of surveillance is dependent on the sensing coverage of a wireless sensor network. In the present paper, we examine how interference affects the coverage of a wireless sensor network. The coverage fraction and required number of sensors for randomly deployed and well-planned deployed wireless sensor networks in the presence of interferers are computed. The required number of sensors to achieve higher level of coverage increases drastically for randomly distributed sensor nodes where the interference effect is high. In the case of well-planned distributed sensor network, required sensors increases linearly as interference effects become more pronounced. Algorithms for computing the required number of sensors to obtain the desired level of coverage in the presence of non-uniform interference is presented. The simulation results suggest that the coverage per subregion and coverage per sensor approaches towards, the improvement achieved is constant. The sensor saving ratio is independent of the level of the desired coverage provided the coverage per subregion is larger than or equal to the coverage per sensor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号